Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 198))

  • 108 Accesses

Abstract

The replacement of the elemental sources of conventional MBE with simple compounds, first reported in 1980 [1], was initiated in order to bring the advantages of molecular beam epitaxy to the growth of GaxIn1−xAs1−yPy/InP heterostructures. These advantages center about precision in layer thickness and abruptness in doping and heterojunction interfaces. This replacement of elemental sources was necessary because III–V semiconductors containing P, and particularly As and P simultaneously, are very difficult to grow by conventional MBE. A well controlled and useful beam flux from an effusion cell containing elemental phosphorus is difficult to achieve because of the presence of allotropic forms of solid P, each having a different vapor pressure, and because condensed P vaporizes to yield P4 molecules. The morphological observations of Asahi et al [2] of InP grown with P4, and the studies of the relative incorporation of As and P during MBE of GaAs1−yPy and InAsyP1−y by Foxon et al [3], suggest that P4 has a small accommodation coefficient on the III–V surface. It is possible, of course to thermally crack P4 to P2, and P2 can readily be used for epitaxy of P containing III–V compounds. Its accommodation coefficient is approximately unity [4]. However, the generation of P2 by adding a thermal cracker to a conventional effusion oven does not eliminate the underlying stability problem and has added control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Panish, J. Electrochem. Soc. 127, 2729 (1980).

    Article  Google Scholar 

  2. H. Asahi, Y. Kawamura, M. Ikeda and H. Okamoto, J. Appl. Phys. 52, 2852 (1981).

    Article  ADS  Google Scholar 

  3. C. T. Foxon, B. A. Joyce and M. T. Norris, J. Crystal Growth 49, 132 (1980).

    Article  ADS  Google Scholar 

  4. M. B. Panish and S. Sumski, J. Appl. Phys. 55, 3571 (1984).

    Article  ADS  Google Scholar 

  5. E. Veuhoff, W. Pletschen, P. Balk and H. Lüth, J. Cryst Growth 55, 30 (1981).

    Article  ADS  Google Scholar 

  6. W. T. Tsang, A. N. Dayem, T. H. Chiu, J. E. Cunningham, E. F. Schubert, J. A. Ditzenburger, J. Shah, J. L. Zyskind and N. Tabatabaie, Appl. Phys. Lett. 49, 170 (1986).

    Article  ADS  Google Scholar 

  7. M. B. Panish, J. Cryst. Growth 81, 249 (1987).

    Article  ADS  Google Scholar 

  8. W. T. Tsang, J. Electron. Mat. 15, 235 (1986).

    Article  ADS  Google Scholar 

  9. M. B. Panish and J. R. Arthur, J. Chem. Thermo. 2, 299 (1970).

    Article  Google Scholar 

  10. J. Drowart and P. Goldfinger, J. Chem. Phys. 55, 721 (1958).

    Google Scholar 

  11. G. J. Macur, R. K. Edwards and P. G. Wahlbeck, J. Phys. Chem. 70, 2956 (1966).

    Article  Google Scholar 

  12. R. Hultgren, R. L. Orr, P. D. Anderson and K. K. Kelley, “Selected Values of Thermodynamic Properties of Metals and Alloys”, John Wiley and Sons, N.Y. 1963.

    Google Scholar 

  13. M. B. Panish, J. Cryst. Growth 27, 6 (1974).

    ADS  Google Scholar 

  14. J. R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967).

    Article  ADS  Google Scholar 

  15. C. T. Foxon, J. A. Harvey and B. A. Joyce, J. Phys Chem. Solids 34, 1693 (1973).

    Article  ADS  Google Scholar 

  16. M. B. Panish, Prog. Cryst. Growth and Charact. 12, 1 (1986).

    Article  Google Scholar 

  17. W. T. Tsang, J. Cryst. Growth 81, 261 (1987).

    Article  ADS  Google Scholar 

  18. H. Heinecke, K. Werner, M. Weyers, H. Lüth and P. Balk, J. Crystal Growth 81 270 (1987).

    Article  ADS  Google Scholar 

  19. K. Kimura, S. Horiguchi, K. Kamon, M. Shimazu, M. Mashita, M. Mihara and M. Ishi, J. Crystal Growth 81, 276 (1987).

    Article  ADS  Google Scholar 

  20. T. H. Chiu, W. T. Tsang, J. E. Cunningham and A. Robertson, Jr., J. Appl. Phys. 62, 2302 (1987).

    Article  ADS  Google Scholar 

  21. J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Appl. Phys. A31, 1 (1983).

    ADS  Google Scholar 

  22. J. M. Van Hove, C. S. Lent, P. I. Cohen, J. Vac. Sci. Technol., B1, 741 (1983).

    Google Scholar 

  23. Y. Kawaguchi, H. Asahi and N. Nagai, Proc. 12th Int. Conf. on GaAs and Related Compounds, Karuizawa, Japan, 1985, (Inst. Phys. London, 1986) p.79, Institute of Physics Conf. Series.

    Google Scholar 

  24. N. Vodjdani, A. Lamarchand and H. Paradan, J. Physique, Colloq. C5, Vol 43, 339 (1982).

    Google Scholar 

  25. E. Tokumitsu, Y. Kudou, M. Konagai and K. Takahashi, J. Appl. Phys. 55, 3163 (1984).

    Article  ADS  Google Scholar 

  26. W. T. Tsang, Appl. Phys. Lett., 45, 1234 (1984).

    Article  ADS  Google Scholar 

  27. S. Horiguchi, K. Kimura, K. Kamon, M. Mashita, M. Shimazu, M. Mihara and M. Ishi, Japan. J. Appl. Phys. 25, L979 (1986).

    Article  ADS  Google Scholar 

  28. Y. Kawaguchi, H. Asahi, and H. Nagai, Extended Abstract, 18th Conference on Solid State Devices and Materials, Tokyo (1986) p. 619.

    Google Scholar 

  29. N. Kobayashi, J. L. Benchimol, F. Alexandre and Y. Gao, Appl. Phys. Lett. 51, 1907 (1987).

    Article  ADS  Google Scholar 

  30. C. Abernathy and M. B. Panish unpublished results.

    Google Scholar 

  31. A. Robertson, Jr., T. H. Chiu, W. T. Tsang and J. E. Cunningham, J. Appl. Phys. July 1988, In Press.

    Google Scholar 

  32. E. Tokomitsu, Y. Kudou, M. Konagai and K. Takahashi, J. Appl. Phys. 55, 3163 (1984).

    Article  ADS  Google Scholar 

  33. N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth and P. Balk, J Vacuum Sci. Technol. B3, 671 (1985).

    ADS  Google Scholar 

  34. S. Takagishi and H. Mori, Japan J. Appl Phys. 22, L795 (1983).

    Article  ADS  Google Scholar 

  35. N. Kobayashi and T. Fukui, Electron. Lett. 20, 887 (1984).

    Article  ADS  Google Scholar 

  36. K. Kondo, H. Ishikawa, S. Sasa, Y. Suguyama and Y. Hiyamizu, Japan. J. Appl. Phys. 25, L52 (1986).

    Article  ADS  Google Scholar 

  37. Y. Kawaguchi, H. Asahi and H. Nagai, Japan. J. Appl. Phys. 23, L737 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panish, M.B. (1989). Gas Source Molecular Beam Epitaxy. In: Cole-Hamilton, D.J., Williams, J.O. (eds) Mechanisms of Reactions of Organometallic Compounds with Surfaces. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2522-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2522-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2524-4

  • Online ISBN: 978-1-4899-2522-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics