Skip to main content

The Functional Organization of the Auditory Brainstem in the Mustache Bat and Mechanisms for Sound Localization

  • Chapter
Neurobiology of Sensory Systems

Abstract

The ability of bats to orient and successfully avoid obstacles in total darkness has been of interest to scientists for more than two centuries. Although audition has always been strongly associated with this ability, general acceptance of orientation by sound came only around 1940 with the elegant studies of Griffin and his colleagues (Griffin and Galambos 1941; Galambos and Griffin 1942; an excellent summary of this work is provided in Griffin 1958). They showed that bats are not only able to navigate through complex environments but they also can detect, identify and locate prey in the night sky by emitting loud ultrasonic calls and listening to the echoes that are reflected from nearby insects. Griffin (1944) coined the term echolocation to describe this form of biological sonar. However, it was not until the early 1960s that Alan Grinnell (Grinnell 1963 a,b,c,d) and Nobuo Suga (1964a, b) published the first reports of neural processing of ultrasonic signals by echolocating bats. A few years later, in 1967, Grinnell (1967) reported that the evoked potentials from the inferior colliculus of the mustache bat, a species that had not previously been studied, differed from comparable neural potentials seen in any other animal. The unique feature was that the thresholds of the neural potentials were very sharply tuned to about 60 kHz, the dominant frequency of the mustache bat’s orientation calls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin, L.M. (1985) The Auditory Midbrain: Structure and Function in the Central Auditory Pathway. Humana Press, Clifton, New Jersey.

    Google Scholar 

  • Bateman, G.C. and Vaughan, T.A. (1974) Nightly activities of mormoopid bats. J. Mammal. 55: 45–65.

    Article  Google Scholar 

  • Blauert, J. (1969/1970) Sound localization in the median plane. Acoustica 22: 205–213.

    Google Scholar 

  • Bodenhamer, R.D. and Pollak, G.D. (1983) Response characteristics of single units in the inferior colliculus of mustache bats to sinusoidally frequency modulated signals. J. Comp. Physiol. 153: 67–79.

    Article  Google Scholar 

  • Boudreau, J.C. and Tsuchitani, C. (1968) Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31: 445–454

    Google Scholar 

  • Brunso-Bechtold, J.K., Thompson, G.C. and Masterson, R.B. (1981) HRP study of the organization of auditory afferents ascending to the central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 97: 705–722.

    Article  Google Scholar 

  • Butler, R.A. (1974) Does tonotopy subserve the perceived elevation of a sound?. Federation Proc. 33: 1920–1923.

    CAS  Google Scholar 

  • Feng, A.S. and Vater, M. (1985) Functional organization of the cochlear nucleus of rufous horseshoe bats (Rhinolophus rouxi): frequencies and internal connections are arranged in slabs. J. Comp. Neurol. 235: 529–553.

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick, K.A. (1975) Cellular architecture and topographic organization of the inferior colliculus of the squirrel monkey. J. Comp. Neurol. 164: 185–208.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery, Z.M. and Pollak, G.D. (1984) Neural mechanisms of sound localization in an echolocating bat. Science 225: 725–728.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery, Z.M. and Pollak, G.D. (1985) Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. J. Neurophysiol. 54: 757–781.

    PubMed  CAS  Google Scholar 

  • Fuzessery, Z.M., Wenstrup, J.J. and Pollak, G.D. (1985) A representation of horizontal sound location in the inferior colliculus of the mustache bat (Pteronotus p. parnellii). Hearing Res. 20: 85–89.

    Article  CAS  Google Scholar 

  • Fuzessery, Z.M. (1986) Speculations on the role of frequency in sound localization. Brain Behav. Evol. 28: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Galambos, R. and Griffin, D.R. (1942) Obstacle avoidance by flying bats. J. Exp. Zool. 89: 475–490.

    Article  Google Scholar 

  • Goldberg, J.M. (1975) Physiological studies of the auditory nuclei of the pons. In: Keidel, W.D. and Neff, W.D. (eds.), Handbook of Sensory Physiology, Vol. V. Auditory System, Part 2. Springer-Verlag, New York, pp. 109–144.

    Google Scholar 

  • Goldman, L.J. and Henson, O.W., Jr. (1977) Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol. 2: 411–419.

    Article  Google Scholar 

  • Griffin, D.R. (1944) Echolocation by blind men and bats. Science 100: 589–590.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, D.R. (1958) Listening in the Dark. Yale University Press, New Haven, Conn.

    Google Scholar 

  • Griffin, D.R. and Galambos, R. (1941) The sensory basis of obstacle avoidance by flying bats. J. Exp. Zool. 86: 481–506.

    Article  Google Scholar 

  • Grinnell, A.D. (1963a) The neurophysiology of audition in bats: Intensity and frequency parameters. J. Physiol. 167: 38–66.

    PubMed  CAS  Google Scholar 

  • Grinnell, A.D. (1963b) The neurophysiology of audition in bats: Temporal parameters. J. Physiol. 167: 67–96.

    PubMed  CAS  Google Scholar 

  • Grinnell, A.D. (1963c) The neurophysiology of audition in bats: Directional localization and binaural interactions. J. Physiol. 167: 97–113.

    PubMed  CAS  Google Scholar 

  • Grinnell, A.D. (1963d) The neurophysiology of audition in bats: Resistance to interference. J. Physiol. 167: 114–127.

    PubMed  CAS  Google Scholar 

  • Grinnell, A.D. (1967) Mechanisms of overcoming interference in echolocating animals. In: Busnel R-G (ed) Animal Sonar Systems, Vol I. Laboratoire de Physiologie Acoustique, Jouy-en-Josas 78, France, p. 451-481.

    Google Scholar 

  • Grinnell, A.D. and Grinnell V.S.(1965) Neural correlates of vertical localization by echolocating bats. J. Physiol. 181: 830–851.

    PubMed  CAS  Google Scholar 

  • Harnischfeger, G., Neuweiler, G. and Schlegel, P. (1985) Interaural time and intensity coding in the superior olivary complex and inferior colliculus of the echolocating bat, Molossus ater. J. Neurophysiol. 53: 89–109.

    PubMed  CAS  Google Scholar 

  • Henson, M.M. (1978) The basilar membrane of the bat, Pteronotus parnellii. Anat. Rec. 153: 143–158.

    CAS  Google Scholar 

  • Henson, O.W., Jr., Henson, M.M., Kobler, J.B. and Pollak, G.D. (1980) The constant frequency component of the biosonar signals of the bat, Pteronotus p. parnellii. In: Busnel, R.-G. and Fish, J.F. (eds), Animal Sonar Systems, Plenum Press, New York, p. 913–916.

    Chapter  Google Scholar 

  • Henson, O.W., Jr., Pollak, G.D., Kobler, J.B., Henson, M.M. and Goldman, L.J. (1982) Cochlear microphonics elicited by biosonar signals in flying bats, Pteronotus p. parnellii. Hearing Res. 7: 127–147.

    Article  Google Scholar 

  • Henson, O.W., Jr., Schuller, G. and Vater, M. (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii). J. Comp. Physiol. 157: 587–607.

    Article  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1977) Functional architecture of macaque monkey visual cortex. Ferner Lecture, Proc. R. Soc. Lond. 198: 1–59.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, D.R.F. (1986) The Auditory Brainstem. Progress in Sensory Physiology 7, Autrum, H. and Ottoson, D. (eds.), Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Kossl, M. and Vater, M. (1985) The frequency place map of the bat, Pteronotus parnellii. J. Comp. Physiol. 157: 687–697.

    Article  CAS  Google Scholar 

  • Link, A., Marimuthu, G. and Neuweiler, G. (1986) Movement as a specific stimulus for prey catching behavior in rhinolophid and hipposiderid bats. J. Comp. Physiol. 159: 403–413.

    Article  Google Scholar 

  • Merzenich, M.M. and Reid, M.D. (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77: 397–415.

    Article  PubMed  CAS  Google Scholar 

  • Musicant, A.D. and Butler, R.A. (1984) The psychophysical basis of monaural localization. Hearing Res. 14: 185–190

    Article  CAS  Google Scholar 

  • Neuweiler, G. (1980) Auditory processing of echoes: Peripheral processing. In: Busnel, R.-G. and Fish, J.F. (eds) Animal Sonar Systems. Plenum Press, New York, p. 519–548.

    Chapter  Google Scholar 

  • Neuweiler, G. (1983) Echolocation and adaptivity to ecological constraints. In: Huber, F., Markl, H. (eds) Neuroethology and Behavioral Physiology: Roots and Growing Pains. Springer-Verlag, Berlin Heidelberg New York Tokyo, p. 280–295.

    Chapter  Google Scholar 

  • Neuweiler, G. (1984a) Auditory basis of echolocation in bats. In: Bolis, L., Keynes, R.D., Maddrell S.H.P. (eds) Comparative Physiology of Sensory Systems. Cambridge University Press, Cambridge, p. 115–141.

    Google Scholar 

  • Neuweiler, G. (1984b) Foraging, echolocation and audition in bats. Naturwissenschaften 71: 46–455.

    Article  Google Scholar 

  • Novick, A. and Vaisnys, J.R. (1964) Echolocation of flying insects by the bat, Chilonycteris parnellii. Biol. Bull. 127: 478–488.

    Article  Google Scholar 

  • Oliver, D.L. and Morest, D.K. (1984) The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222: 237–264.

    Article  PubMed  CAS  Google Scholar 

  • Pollak, G.D., Henson, O.W., Jr. and Johnson, R. (1979) Multiple specializations in the peripheral auditory system of the CF-FM bat, Pteronotus parnellii. J. Comp. Physiol. 131: 255–266

    Article  Google Scholar 

  • Pollak, G.D. (1980) Organizational and encoding features of single neurons in the inferior colliculus of bats. In: Busnel, R.-G. and Fish, J.F. (eds) Animal Sonar Systems. Plenum Press, New York, p. 549–587.

    Chapter  Google Scholar 

  • Pollak, G.D. and Bodenhamer, R.D. (1981) Specialized characteristics of single units in inferior colliculus of mustache bat: frequency representation, tuning, and discharge patterns. J. Neurophysiol. 46: 605–619.

    PubMed  CAS  Google Scholar 

  • Pollak, G.D. and Schuller, G. (1981) Tonotopic organization and encoding features of single units in the inferior colliculus of horseshoe bats: Functional implications for prey identification. J. Neurophysiol. 45: 208–226.

    PubMed  CAS  Google Scholar 

  • Pollak, G.D. and Casseday, J.H. (1989) The Neural Basis of Echolocation in Bats. Springer-Verlag, New York, (in press).

    Book  Google Scholar 

  • Pollak, G.D., Henson, O.W., Jr. and Novick, A. (1972) Cochlear microphonic audiograms in the pure tone bat, Chilonycteris parnellii parnellii. Science 176: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Pollak, G.D., Bodenhamer, R.D. and Zook, J.M. (1983) Cochleotopic organization of the mustache bat’s inferior colliculus. In J.-P. Ewert, R.R. Capranica and D.J. Ingle (eds): Advances in Vertebrate Neuroethology. New York, Plenum Press, p. 925–935.

    Chapter  Google Scholar 

  • Pollak, G.D., Wenstrup, J.J. and Fuzessery, Z.M. (1986) Auditory processing in the mustache bat’s inferior colliculus. Trends in Neurosci. 9: 556–561.

    Article  Google Scholar 

  • Pumphery, R.J. (1947) The sense organs of birds. Ibis 90: 171–199.

    Article  Google Scholar 

  • Rockel, A.S. and Jones, E.G. (1973) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Comp. Neurol. 147: 11–60.

    Article  PubMed  CAS  Google Scholar 

  • Ross, L.S., Pollak, G.D. and Zook, J.M. (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J. Comp. Neurol. 270: 488–505.

    Article  PubMed  CAS  Google Scholar 

  • Ross, L.S. and Pollak, G.D. (1988) Differential projections to aural regions in the 60 kHz isofrequency contour of the mustache bat’s inferior colliculus. J. Neurosci. (in press).

    Google Scholar 

  • Roth, G.L., L.M. Aitkin, R.A. Andersen, and M.M. Merzenich (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 752: 661–680.

    Article  Google Scholar 

  • Semple, M.N. and Aitkin, L.M. (1979) Representation of sound frequency and laterality by units in the central nucleus of the cat’s inferior colliculus. J. Neurophysiol. 42: 1626–1639.

    PubMed  CAS  Google Scholar 

  • Serviere, J., Webster, W.R. and Calford, M.B. (1984) Iso-frequency labelling revealed by a combined [14C]-2-deoxy glucose, electrophysiological and horseradish peroxidase study of the inferior colliclus of the cat. J. Comp. Neurol. 228: 463–477.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler, H.-U. (1967) Discrimination of thin wires by flying horseshoe bats(Rhinolophidae). In: Busnel, R.-G. (ed) Animal Sonar Systems, Vol I. Laboratoire de Physiologie Acoustique, Jouy-en-Josas 78, France, p. 68-87.

    Google Scholar 

  • Schnitzler, H.-U. (1970) Comparison of echolocation behavior in Rhinolophus ferrumequinum and Chilonycteris rubiginosa. Bijdr Dierkd 40: 77–80.

    Google Scholar 

  • Schnitzler, H.-U. and Flieger, E. (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J. Comp. Physiol. 153: 385–391.

    Article  Google Scholar 

  • Schnitzler, H.-U. and Ostwald, J. (1983) Adaptations for the detection of fluttering insects by echolocation in horseshoe bats. In: Ewert, J.-P., Capranica, R.R. and Ingle, DJ. (eds) Advances in Vertebrate Neuroethology. Plenum Press, New York, p. 801–827.

    Chapter  Google Scholar 

  • Schnitzler, H.-U., Menne, D., Kober, R. and Heblich, K. (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber, F., Markl, H. (eds) Neuroethology and Behavioral Physiology: Roots and Growing Pains. Springer-Verlag, Berlin Heidelberg New York Tokyo, p. 235–250.

    Chapter  Google Scholar 

  • Schuller, G. (1979a) Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the CF-FM bat, Rhinolophus ferrumequinum. Exp. Brain Res. 34: 117–132.

    Article  PubMed  CAS  Google Scholar 

  • Schuller, G. (1979b) Vocalization influences auditory processing in collicular neurons of the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 132: 39–46.

    Article  Google Scholar 

  • Schuller, G. (1984) Natural ultrasonic echoes form wing beating insects are coded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 155: 121–128.

    Article  Google Scholar 

  • Schuller, G. and Pollak, G.D. (1979) Disproportionate frequency representation in the inferior colliculus of horseshoe bats: Evidence for an “acoustic fovea”. J. Comp. Physiol. 132: 47–54.

    Article  Google Scholar 

  • Schuller, G., Beuter, K. and Schnitzler, H.-U. (1974) Response to frequency shifted artificial echoes in the bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 89: 275–286.

    Article  Google Scholar 

  • Simmons, J.A. (1971) The sonar receiver of the bat. Ann. NY. Acad. Sci. 188: 161–184.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A. (1973) The resolution of target range by echolocating bats. J. Acoust. Soc. Amer. 54: 157–173.

    Article  CAS  Google Scholar 

  • Simmons, J.A. (1974) Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. J. Acoust. Soc. Amer. 56: 672–682.

    Article  CAS  Google Scholar 

  • Simmons, J.A., Howell, D.J. and Suga, N. (1975) Information content of bat sonar echoes. Amer Sci. 63: 16–21.

    Google Scholar 

  • Suga, N. (1964a) Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J. Physiol. 175: 50–80.

    PubMed  CAS  Google Scholar 

  • Suga, N. (1964b) Single unit activity in the cochlear nucleus and inferior colliculus of echolocating bats. J. Physiol. 172: 449–474.

    PubMed  CAS  Google Scholar 

  • Suga, N. (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Fed. Proc. 37: 2342–2354.

    PubMed  CAS  Google Scholar 

  • Suga, N. (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman, G.M., Gall, W.E. and Cowan, W.M. (eds) Dynamic Aspects of Neocortical Function. John Wiley & Sons, New York, pp 315–374.

    Google Scholar 

  • Suga, N. and Jen, P.H.-S. (1977) Further studies on the peripheral auditory system of “CF-FM” bats specialized for the fine frequency analysis of Doppler-shifted echoes. J. Exp. Biol. 69: 207–232.

    PubMed  CAS  Google Scholar 

  • Suga, N., Simmons, J.A. and Jen, P.H.-S. (1975) Peripheral specializations for fine frequency analysis of Doppler-shifted echoes in the CF-FM bat, Pteronotus parnellii. J. Exp. Biol. 63: 161–192.

    PubMed  CAS  Google Scholar 

  • Suga, N., Neuweiler, G. and Moller, J. (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV Properties of peripheral auditory neurons. J. Comp. Physiol. 106: 111–125.

    Article  Google Scholar 

  • Sur, M., Merzenich, M.M. and Kass, J.H. (1980) Magnification, receptivefield area and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J. Neurophysiol. 44: 295–311.

    PubMed  CAS  Google Scholar 

  • Trappe, M. and Schnitzler, H.-U. (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69: 193–194.

    Article  Google Scholar 

  • Vater, M. (1987) Narrow-band frequency analysis in bats. In: Fenton MB, Racey P and Rayner JMV (eds) Recent Advances in the Study of Bats. Cambridge University Press, Cambridge, p. 200–210.

    Google Scholar 

  • Wenstrup, J.J., Fuzessery, Z.M. and Pollak, G.D. (1986a) Binaural response organization within a frequency-band representation of the inferior colliculus: Implications for sound localization. J. Neurosci. 6: 692–973.

    Google Scholar 

  • Wenstrup, J.J., Ross, L.S. and Pollak, G.D. (1986b) Organization of IID sensitivity in isofrequency representations of the mustache bat’s inferior colliculus. In: IUPS Symposium on Hearing, University of California, San Francisco, CA. Abstract 415.

    Google Scholar 

  • Wenstrup, J.J., Fuzessery, Z.M. and Pollak, G.D. (1988a) Binaural neurons in the mustache bat’s inferior colliculus: I. Responses of 60 kHz El units to dichotic sound stimulation. J. Neurophysiol. 60: 1369–1383.

    PubMed  CAS  Google Scholar 

  • Wenstrup, J.J., Fuzessery, Z.M. and Pollak, G.D. (1988b) Binaural neurons in the mustache bat’s inferior colliculus: II. Determinants of spatial responses among 60 kHz EI units. J. Neurophysiol. 60: 1384–1404.

    PubMed  CAS  Google Scholar 

  • Zook, J.M. and Casseday, J.H. (1982) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. J. Comp. Neurol. 207: 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J.M. and Casseday, J.H. (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J. Comp. Neurol. 237: 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J.M. and Casseday, J.H. (1987) Convergence of ascending pathways at the inferior colliculus of the mustache bat, Pteronotus parnellii. J. Comp. Neurol. 261: 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J.M. and Leake, P.A. (1988) Correlation of cochlear morphology specializations with frequency representation in the cochlar nucleus and superior olive of the mustache bat, Pteronotus parnellii. J. Comp. Neurol. (in press).

    Google Scholar 

  • Zook, J.M., Winer, J.A., Pollak, G.D. and Bodenhamer, R.D. (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: Correlation of single unit properties and neuronal architecture. J. Comp. Neurol. 231: 530–546.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollak, G.D. (1989). The Functional Organization of the Auditory Brainstem in the Mustache Bat and Mechanisms for Sound Localization. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics