Skip to main content

Insect Vision and Olfaction: Common Design Principles of Neuronal Organization

  • Chapter
Book cover Neurobiology of Sensory Systems

Abstract

In insects, the organization of neurons in visual and olfactory neuropils is comparable to arrangements in analogous systems in the brains of higher vertebrates. However, although the two modalities of vision and olfaction are subjectively quite different from each other, in insects they are served by common neuroarchitectures, the glomeruli, which are here suggested to be paramount in the processing of qualitative information. Visual and olfactory systems show other specific similarities with respect to the parallel organization of large- and small-axoned neurons. In the visual system, two parallel channels comprise large color-insensitive and small color-sensitive relay neurons that are linked to two major descending pathways. Color insensitive pathways supply motor circuits mediating visually stabilized flight and optokinetic head movements. This pathway is distinct from the parallel subsystem comprising numerous smaller neurons and many synaptic stations that supply leg and direct flight muscle motor neuropils. These two subsystems provide a simple model of magno- and parvocellular organizations identified in the mammalian visual system. Surprisingly, there exists a similar parallel organization amongst large- and small-axoned neurons in the insect olfactory system. Magnocellular olfactory projection neurons provide a relatively direct route to descending pathways. Smaller parvocellular projection neurons provide the first step in a complex sequence of neurons in which higher brain centers play a cardinal role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson PA, Olavarria J, Van Sluyters RC (1988) The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8: 2183–2200

    PubMed  CAS  Google Scholar 

  • Arbas EA, Humphreys CJ, Ache BW (1988) Morphology and physiology properties of interneurons in the olfactory midbrain of the crayfish. J Comp Physiol A 164: 231–241

    Article  PubMed  CAS  Google Scholar 

  • Arnold G, Masson C., Budharugsa A (1985) Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera)

    Google Scholar 

  • Bacon JP, Murphey RK (1984) receptive fields of cricket (Acheta domesticus) are determined by their dendritic structure. J Physiol (Lond) 352: 601–616

    CAS  Google Scholar 

  • Bacon JP, Strausfeld NJ (1986) The dipteran “Giant fibre” pathway: neurons and signals. J Comp Physiol A 158: 529–548

    Article  Google Scholar 

  • Baker TC, Kuenen LPS (1982) Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216: 424–427

    Article  PubMed  CAS  Google Scholar 

  • Baker TC, Willis MA and Phelan PL (1984) Optomotor anemotaxis polarizes self-steering zigzagging in flying moths. Physiol Entomol 9: 365–376

    Article  Google Scholar 

  • Beersma DGM, Stavenga DG, Kuiper JW (1977) retinal lattice, visual field and binocularities in flies. J Comp Physiol A 119: 207–220

    Article  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321: 579–585

    Article  PubMed  CAS  Google Scholar 

  • Boeckh J, Kaissling K-E, Schneider D (1960) Sensillen und Bau der Antennegeissel von Telea polyphemus. Zool Anat 78: 559–584

    Google Scholar 

  • Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus. J Comp Physiol A 132: 235–242

    Article  CAS  Google Scholar 

  • Borst A, Fischbach K-F (1987) Golgi-and degeneration studies of the antennal lobes of Drosophila melanogaster. J Neurogenetics 4: 115–127

    Google Scholar 

  • Braitenberg V (1967) Patterns of projection in the visual system of the fly. I. Retinalamina projections. Exp Brain Res 3: 271–298

    Article  PubMed  CAS  Google Scholar 

  • Bretschneider F (1924) über die Gehirn des Eichenspinners und des Seidenspinners (Lasiocampa quercus und Bombyx mori). Z Wiss Zool A 60: 563–578

    Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16: 86–109

    Google Scholar 

  • Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurons in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145: 447–457

    Article  Google Scholar 

  • Cajal SR (1888) Estructura de los centros nerviosos de los aves. Rev Trim Histol Norm Patol 1: 1–10

    Google Scholar 

  • Cajal SR (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés (1972 ed). Madrid CSIC

    Google Scholar 

  • Cajal SR (1917) Contribucion al conocimiento de la retina y centros opticos de los cefalopodos. Trab Lab Invest Biol Univ Madrid 15: 1–82

    Google Scholar 

  • Cajal SR, Sanchez DS (1915) Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. Trab Lab Invest Biol Univ Madrid 13: 1–168

    Google Scholar 

  • Camazine SM, Hildebrand JG (1979) Central projections of antennal sensory neurons in mature and developing Manduca sexta. Soc Neurosci Abstr 5:155

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1972) The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z Zeilforsch 124: 561–585

    Article  CAS  Google Scholar 

  • Christensen TA, Hildebrand JG (1987) Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J Comp Physiol A 160: 553–569

    Article  PubMed  CAS  Google Scholar 

  • Christensen TA, Hildebrand JG (1988) Frequency coding by central olfactory neurons in the sphinx moth Manduca sexta. Chem Senses 13: 123–130

    Article  Google Scholar 

  • Christensen TA, Mustaparta H, Hildebrand JG (1989a) Discrimination of sex pheromone blends in the olfactory system of the moth. Chemical Senses 14: 122–136

    Article  Google Scholar 

  • Christensen TA, Hildebrand JG, Tumlinson JH, Doolittle RE (1989b) Sex pheromone blend of Manduca sexta: responses of central olfactory interneurons to antennal stimulation in male moths. Arch Insect Biochem Physiol 10: in press

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly Syritta pipiens. J Comp Physiol A 99: 1–66

    Article  Google Scholar 

  • Den Otter CJ, Scheil HA, Sander-Van Oosten A (1978) Reception of host-plant odours and female sex-pheromone in Adoxophyes orana (Lepidoptera: Tortricidae): Electrophysiology and morphology. Entomol Exp Appl 24: 570–578

    Article  Google Scholar 

  • Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc Roy Soc B 166: 80–111

    Article  CAS  Google Scholar 

  • Dujardin F (1850) Memoire sur le Système nerveux des Insects. Ann Sci Nat Zool 14: 195–206

    Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee Apis mellifera. Physiol Entomol 5: 343–358

    Article  Google Scholar 

  • Erber J, Homberg U, Gronenberg W (1987) Functional roles of the mushroom bodies in insects. In: Gupta AP (ed) Arthropod brain. Its evolution, development, structure and function. Wiley, New York, pp 485–511

    Google Scholar 

  • Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurons in Periplaneta americana. Cell Tissue Res 229: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Flanagan D, Mercer AR (1989) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honey bee Apis mellifera.

    Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly. Fundamentals and application. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin, pp 97–125

    Google Scholar 

  • Franceschini N (1985) Early processing of color and motion in a mosaic visual system. Neurosci Res Suppl 2: 17–49

    Article  Google Scholar 

  • Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981) Sexual dimorphism in a photoreceptor. Nature 291: 241–244

    Article  Google Scholar 

  • Gilbert CD, Wiesel TN (1981) Laminar specialization and intracortical projections in cat primary visual cortex. In: Schmitt FO, Worden FG, Adelman G, Dennis MG (eds). The organization of the cerebral cortex. MIT Press, Cambridge, pp 163–198

    Google Scholar 

  • Grant AJ, O’Connell RJ, Hammond AM (1987) A comparative study of the neurophysiological response characteristics of olfactory receptor neurons in two species of noctuid moths. In: Rope SD, Atema J (eds) Olfaction and taste IX. Ann NY Acad Sci 510: 311-314

    Google Scholar 

  • Gronenberg W (1980) Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. Exp Biol 46: 115–125

    Google Scholar 

  • Gronenberg W, Strausfeld NJ (1989) Descending neurons associated with wide-field motion-sensitive optic lobe afferents segregate to neck and flight motor neuropil and respond to panoramic cues. Soc Neurosci Abstr 15: in press

    Google Scholar 

  • Haberly LOB (1985) Neural circuitry in olfactory cortex: anatomy and functional implications. Chem Senses 10: 219–238

    Article  Google Scholar 

  • Hamilton KA, Kauer JS (1988) Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander. J Neurophysiol 59: 1736–1755

    PubMed  CAS  Google Scholar 

  • Hardie RC (1983) Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica). Cell Tissue Res 233: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora J Comp Physiol A 154: 157–165

    Article  Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9: 419–423

    Article  Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol Cybern 46: 67–79

    Article  Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms in visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Heidelberg, Springer, pp 391–424

    Chapter  Google Scholar 

  • Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc Lond B 208: 57–71

    Article  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. Neurogenetics 2: 1–30

    Article  CAS  Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol A 137: 215–232

    Article  Google Scholar 

  • Homburg U (1984) Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J Comp Physiol A 154: 825–836

    Article  Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989a) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34: 477–501

    Article  PubMed  CAS  Google Scholar 

  • Homburg U, Montague RA, Hildebrand JG (1989b) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta Cell Tissue Res 254: 255–281

    Google Scholar 

  • Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta Cell Tissue Res 244: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Livingstone MS (1987) Separation of form, color, and stereopsis in primate area 18. J Neurosci 7: 3378–3415

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198: 1–59

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1977) Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature 269: 328–330

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GA, Miller JP, Murphey RK (1986) Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. J Neurosci 6: 2298–2311

    PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Pedersen PE, Greer CA, Stewart WB, Kauer JS, Benson TE, Shepherd GM (1984) Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb. Proc Nat Acad Sci USA 81: 5250–5254

    Article  PubMed  CAS  Google Scholar 

  • Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV. I. Springer, Berlin, pp 351–431

    Google Scholar 

  • Kaissling KE (1987) R.H. Wright lectures on insect olfaction. Simon Fraser University Press, Burnaby

    Google Scholar 

  • Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A new pheromone of the silk worm moth Bombyx mori Sensory pathway and behavioral effect. Naturwissenschaften 65: 382–384

    Article  CAS  Google Scholar 

  • Kaissling KE, Hildebrand JG, Tumlinson JH (1989) Pheromone receptor cells in the male moth Manduca sexta Arch Insect Biochem Physiol. in press

    Google Scholar 

  • Kanzaki R, Arbas EA, Strausfeld NJ, Hildebrand JG (1989) Physiology and morphology of projection neurons in the antennal lobes of the male moth Manduca sexta J Comp Physiol A 165: 427–453

    Article  PubMed  CAS  Google Scholar 

  • Kamper G, Murphey RK (1987) Synapse formation by sensory neurons after cross-species transplantation in crickets: the role of positional information. Dev Biol 122: 492–502

    Article  PubMed  CAS  Google Scholar 

  • Katz LC (1987) Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 7: 1223–1249

    PubMed  CAS  Google Scholar 

  • Katz LC, Gilbert CD, Wiesel TN (1989) Local circuits and ocular dominance columns in monkey striate cortex. J Neurosci 9: 1389–1399

    PubMed  CAS  Google Scholar 

  • Kauer JS (1987) Coding in the olfactory system. In: Finger TE, Silver WL (eds) Neurobiology of taste and smell. Wiley, New York, pp 205–231

    Google Scholar 

  • Kauer JS, Hamilton KA (1987) Odor information processing in the olfactory bulb. Evidence from extracellular and intracellular electrodes and from 2-deoxyglucose mapping. In: Roper SD, Atema J (eds) Olfaction and taste IX. Ann NY Acad Sci 1987: 400-402

    Google Scholar 

  • Kauer JS, Moulton DG (1974) Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J Physiol 243: 717–737

    PubMed  CAS  Google Scholar 

  • Kennedy JS (1983) Zigzagging and casting as a response to windborne odour: a review. Physiol Ent 8: 109–120

    Article  Google Scholar 

  • Kenyon FC (1896) The brain of the bee. J Comp Neurol 6: 133–210

    Article  Google Scholar 

  • Keil T (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue and Cell 14: 451–462

    Article  PubMed  CAS  Google Scholar 

  • Keil T (1984) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study o0f sensilla trichoidea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104: 147–156

    Article  Google Scholar 

  • Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J Comp Physiol A 113: 17–34

    Article  Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3: 248–270

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld K (1987) Activation of visual pigment: Chromophore structure and function. In: Stieve H (ed) The molecular mechanism of photoreception. Dahlem Konferenzen Life Science Research Report 34. Springer, Berlin, pp. 29–49

    Google Scholar 

  • Lancet D, Greer CA, Kauer JS, Shepherd GM (1982) Mapping of odor related activity in the olfactory bulb by high resolution 2-deoxyglucose autoradiography. Proc Natl Acad Sci USA 79: 670–674

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology VII 6 B. Invertebrate visual centers and behavior. Springer, New York, pp 471–594

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behavior of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol A 89: 331–358

    Article  Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of fly eyes. J Comp Physiol A 156: 525–538

    Article  Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory physiology VII 6 B. Invertebrate visual centers and behavior. Springer, New York, pp 130–280

    Google Scholar 

  • LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol 159: 559–576

    Article  PubMed  CAS  Google Scholar 

  • Livingston MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4: 309–356

    Google Scholar 

  • Macrides F, Schneider SP (1982) Laminar organization of mitral and tufted cells in the main olfactory bulb of the hamster. J Comp Neurol 208: 419–430

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Nadel L (1989) Hebb-Marr networks and the neurobiological representation of action in space. In: Gluck MA, Rumelhart DE (eds) Neuroscience and connectionist theory. Lawrence and Erlbaum, Hillsdale, in press

    Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc Roy Soc Lond B 213: 249–277

    Article  CAS  Google Scholar 

  • Milde JJ, Strausfeld NJ (1989) Cluster organization and response characteristics of the giant fiber pathway of the blowfly alliphora erythrocephala J Comp Neurol, submitted

    Google Scholar 

  • Milde JJ, Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly alliphora erythrocephala II. Sensory organization. J Comp Physiol A 160: 225–238

    Article  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee, Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B 298: 309–354

    Article  Google Scholar 

  • Mobbs PG (1985) Brain structure. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 5. Nervous systems, structure and motor function. Pergamon Oxford, pp 299-370

    Google Scholar 

  • Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29: 275–320

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kishi K, Ojima H (1983) Distribution of dendrites of mitral, displaced mitral, tufted and granule cells in the isolated turtle olfactory bulb. J Neurosci 2: 497–502

    Google Scholar 

  • Murlis J, Jones CD (1981) Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6: 71–86

    Article  Google Scholar 

  • Murphey RK (1981) The structure and development of a somatotopic map in crickets: the cercal afferent projection. Dev Biol 88: 236–246

    Article  PubMed  CAS  Google Scholar 

  • Murphey RK, Walthall WW, Jacobs GA (1984) Neurospecificity in the cricket cercal system. J Exp Biol 112: 7–25

    PubMed  CAS  Google Scholar 

  • Oland LA, Tolbert LP (1989) Patterns of glial proliferation during formation of olfactory glomeruli in an insect. Glia 2: 10–24

    Article  PubMed  CAS  Google Scholar 

  • Pearson L (1971) The corpora pedunculata of Sphinx ligustri L. and other Lepidoptera: an anatomical study. Philos Trans R Soc B 259: 477–516

    Article  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, new York

    Google Scholar 

  • Perret DI, Mistlin AJ, Chitty AJ (1987) Visual neurones responsive to faces. Trends Neurosci 9: 358–364

    Article  Google Scholar 

  • Pollak GD, Weistrup JJ, Fuzessey Z (1986) Auditory processing in the mustache bat’s inferior colliculus. Trends Neurosci 9: 556–601

    Article  Google Scholar 

  • Pinching AJ, Powell TPS (1971a) The neuron types of the glomerular layer of the olfactory bulb. J cell Sci 9: 347–377

    PubMed  CAS  Google Scholar 

  • Pinching AJ, Powell TPS (1971b) The neuropil of the periglomerular region of the olfactory bulb. J Cell Sci 9: 379–409

    PubMed  CAS  Google Scholar 

  • Price JL, Powell TPS (1970) The synaptology of the granule cells in the olfactory bulb. J Cell Sci 7: 125–155

    PubMed  CAS  Google Scholar 

  • Pugh E, Altman J (1988) A role for calcium in adaptation. Nature 334: 16–17

    Article  PubMed  CAS  Google Scholar 

  • Ribi WA (1975) The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tissue Res 165: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1977) Core conductor theory and the cable properties of neurons. In: Kandel E (ed) Handbook of physiology. The nervous system I. Amer Physiol Society, Bethesda, pp. 39–97

    Google Scholar 

  • Reese TS, Shepherd GM (1972) Dendro-dendritic synapses in the central nervous system. In: Pappas GD, Pupura DP (eds) Structure and function of synapses. Raven, New York, pp 121–136

    Google Scholar 

  • Reichert H, Rowell CHF (1986) Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. Trends Neurosci. 9: 281–283

    Article  Google Scholar 

  • Retzius G (1892) Die Endigungsweise der Reichnerven. Biol Untersuch Neue Folge 3: 25–28

    Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: a parametric control over on-off pathways. Exp Brain Res 195: 299–308

    Google Scholar 

  • Rodriguez V (1988) Spatial coding of olfactory information in the antennal lobes of Drosophila melanogaster. Brain Res 543: 299–307

    Article  Google Scholar 

  • Rospars P (1983) Invariance and sex specific variations of the glomerular organization in the antennal lobes of a moth Mamestra brassicae, and a butterfly Pieris brassicae. J Comp Neurol 220: 80–96

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DS (1937) Sur le centre antenno-moteur ou antennaire postérieur de l’abeille. Trab Lab Invest Biol Univ Madrid 31: 245–269

    Google Scholar 

  • Sanes JR, Hildebrand JG (1976) Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51: 282–299

    Article  Google Scholar 

  • Schildberger K (1984) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol A 154: 71–79

    Article  Google Scholar 

  • Schneiderman AM, Matsumoto SG, Hildebrand JG (1982) Trans-sexually grafted antennae influence development of sexually dimorphic neurones in moth brain. Nature 298: 844–846

    Article  Google Scholar 

  • Schneiderman AM, Hildebrand JG, Brennan MM, Tumlinson JH (1986) Trans-sexually grafted antennae alter pheromone-directed behavior in a moth. Nature 323: 801–846

    Article  PubMed  CAS  Google Scholar 

  • Schneider SP, Macrides F (1978) Laminar distribution of interneurons in the main olfactory bulb of the adult hamster. Brain Res Bull 3: 73–82

    Article  PubMed  CAS  Google Scholar 

  • Schürmann FW (1971) Synaptic contacts of association fibers in the brain of the bee. Brain Res 26: 169–176

    Article  Google Scholar 

  • Schürmann FW (1967) The architecture of the mushroom bodies and related neuropils in the insect brain. In: Gupta AP (ed) Arthropod brain. Its evolution, development, structure, and functions. Wiley, New York, pp 231–264

    Google Scholar 

  • Scott JW, Harrison TA (1987) The olfactory bulb: anatomy and physiology. In: Finger TE, Silver WL (eds) Neurobiology of taste and smell. Wiley, New York, pp 151–178

    Google Scholar 

  • Shaw SR (1984) Early visual processing in insects. J Exp Biol 112: 225–251

    PubMed  CAS  Google Scholar 

  • Shepherd GM (1988) Neurobiology, 2nd ed Oxford, New York

    Google Scholar 

  • Sirianni PA, Tolbert LP (1988) Induction and stabilization of olfactory glomeruli in the developing insect brain. Soc Neurosci Abstr 14:423

    Google Scholar 

  • Steffen H, van der Loos H (1980) Early lesions of mouse vibrissal follicles: their influence on dendrite orientation in the developing barrel field. Exp Brain Res 41: 410–431

    Google Scholar 

  • Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, lepidoptera): Rezeptorfortsätze und reizleitender Apparat. Z Zellforsch mikrosk Anat 139: 533–565

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecht RA, Gnatzy W (1984) Pheromone receptors of Bombyx mori and Antheraea pernyi. 1. Reconstruction of the cellular organization of the sensilla trichoidea. Cell Tissue Res 235: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Stewart WB, Kauer JS, Shepherd GM (1979) Functional organization of the rat olfactory bulb, analyzed by the 2-deoxyglucose method. J Comp Neurol 185: 715–734

    Article  PubMed  CAS  Google Scholar 

  • Stocker RF, Singh RN (1983) Different types of antennal sensilla in Drosophila project into different glomeruli of the brain. Experientia 39:674

    Google Scholar 

  • Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1970) Golgi studies on insects. II. The optic lobes of Diptera. Philos Trans R Soc Lond B 258: 135–223

    Article  CAS  Google Scholar 

  • Strausfeld NJ (1971) The organization of the insect visual system (light microscopy). I. Projections and arrangements of neurons in the lamina ganglionaris of Diptera. Z Zellforsch 121: 377–441

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Heidelberg

    Book  Google Scholar 

  • Strausfeld NJ (1979) The representation of a receptor map within retinotopic neuropil of the fly. Verh Dtsch Zool Ges 73: 167–179

    Google Scholar 

  • Strausfeld NJ (1980) Male and female visual neurones in dipterous insects. Nature 283: 381–383

    Article  Google Scholar 

  • Strausfeld NJ (1984) Functional neuroanatomy of the blowfly’s visual system. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 483–522

    Chapter  Google Scholar 

  • Strausfeld NJ (1987) Sex-specific neurons in the visual system of blowflies (Calliphora erythrocephala) represent concentrically organized retinotopic domains and are segregated out to end at specific regions of premotor descending neurons. Soc Neurosci Abstr 13:137

    Google Scholar 

  • Strausfeld NJ (1988) Selective staining reveals complex microstructures within antennal lobe glomeruli of Manduca sexta. In: Eisner N, Barth FG (eds) Sense organs: interfaces between environment and behaviour. Thieme, Stuttgart, p 67

    Google Scholar 

  • Strausfeld NJ (1989) Beneath the compound eye: Neuroanatomical analysis and physiological correlates in the study of insect vision. In: Hardie RC, Stavenga DG (eds) Facets of vision. Springer, Heidelberg, pp 317–359

    Chapter  Google Scholar 

  • Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of insects. In: Horn E (ed) Multimodal convergence in sensory systems. Gustav Fischer, Stuttgart, pp 47–76

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985a) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and motor neuropil in Calliphora erythrocephala. Cell Tissue Res 240: 617–640

    Article  Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985b) The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora and Musca. Cell Tissue Res 242: 531–550

    Google Scholar 

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects.I. The optic lobes of Lepidoptera. Philos Trans R Soc Lond B 258: 81–134

    Article  CAS  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1973) The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L). Brain Res 59: 97–117

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Hausen K (1977) The resolution of neuronal assemblies after cobalt injection into neuropil. Proc R Soc Lond B 199: 463–476

    Article  Google Scholar 

  • Strausfeld NJ, Milde JJ (1988) Descending neurons receiving common sensory inputs diverge from the insect brain to functionally distinct motor neuron pools in thoracic ganglia. Soc Neuroci Abstr 14:998

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1980) Neuroarchitectures serving compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology VII/6B. Springer, Berlin, pp 1–32

    Google Scholar 

  • Strausfeld NJ, Seyan HS (1987) Identification of complex neuronal arrangements in the visual system of Calliphora erythrocephala using triple fluorescence staining. Cell Tissue Res 247: 5–10

    Article  Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RN, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30: 73–93

    Article  Google Scholar 

  • Tolbert LP (1989) Afferent axons from the antenna influence the number and placement of intrinsic synapses in the antennal lobes of Manduca sexta Synapse 3: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LP, Hildebrand JG (1981) Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta a study using thin sections and freeze-fracture. Proc R Soc Lond B 213: 279–301

    Article  Google Scholar 

  • Tumlinson JH, Brennan MM, Doolittle RE, Mitchell ER, Brabham A, Mazomenos BE, Baumhover AH, Jackson DM (1989) Identification of a pheromone blend attractive to Manduca sexta(L.) males in a wind tunnel. Arch Insect Biochem Physiol 10: in press

    Google Scholar 

  • Valverde F (1965) Studies on the piriform lobe. Harvard University Press Cambridge

    Google Scholar 

  • Wagner H (1986a) Fight-performance and visual control of the free-flying housefly (Musca domesticaL.), II. Pursuit of targets. Phil Trans Roy Soc Lond B 312: 553–579

    Article  Google Scholar 

  • Waldrop B, Hildebrand JG (1989) Physiology and pharmacology of acetylcholine responses of interneurons in the antennal lobes of the moth Manduca sexta J Comp Physiol A 164: 433–441

    Article  PubMed  CAS  Google Scholar 

  • Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta J Comp Physiol A 161: 23–32

    Article  CAS  Google Scholar 

  • Walthall WW, Murphey RK (1986) Positional information, compartments and the cercal system of crickets. Dev Biol 113: 182–200

    Article  Google Scholar 

  • Willis MA, Baker TC (1984) Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth Grapholita molesta Physiol Entomol 9: 341–358

    Article  Google Scholar 

  • Woolsey TA, van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205–242

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley MTT (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171: 11–28

    Article  PubMed  CAS  Google Scholar 

  • Zawarzin AA (1925) Der Parallelismus der Strukturen als Grundprinzip der Morphologie. Z wiss Zool 124: 118–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strausfeld, N.J. (1989). Insect Vision and Olfaction: Common Design Principles of Neuronal Organization. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics