Skip to main content

Developmental Studies on the Optic Lobe of Drosophila Melanogaster Using Structural Brain Mutants

  • Chapter

Summary

On the background of a detailed analysis of wildtype structure, mutants of the visual system of Drosophila melanogaster are being used for identification of genetic and epigenetic factors in the development of the compound eye and optic lobe. Mutant analysis reveals the role the larval visual system plays in the development of the adult optic lobe, and that visual fibres are able to reach their retinotopic destination via ectopic pathways. By use of different mutations and their multiple combinations, the visual system can be simplified by drastically reducing the number of cell types in the optic lobe. Simplification is limited by the response of remaining neurons which show sprouting and compensatory innervation. It is expected that the molecular characterization of the neurological genes will yield information about mechanisms of neuronal function, neuronal diversification, axonal pathfinding, and target recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora K., Rodrigues V., Joshi S., Shanbhag S., and Siddiqi O. (1987). A gene affecting the specificity of the chemosensory neurons of Drosophila. Nature 330, 5 (1987).

    Article  Google Scholar 

  • Barleben F. (1987). Genetische und phänotypische Charakterisierung neu isolierter Gehirnstrukturmutanten von Drosophila melanogaster. Dipl. thesis, Univ Freiburg.

    Google Scholar 

  • Barleben F., Baumann U., Davies J., Pirrotta V., Olson J., Hall F., Cotsell J., Delaney S., Hayward D., Schuppler U., Fischbach K.-F., and Miklos G.L.G. (1988). Molecular and genetic analysis of the small optic lobes/sluggish region of the X-chromosome of D. melanogaster. J. Neurogenetics (in press).

    Google Scholar 

  • Benzer S. (1967). Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. USA 58, 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  • Benzer S. (1971). From the gene to behaviour. J. Am. Med. Assoc. 218, 1015–1022.

    Article  CAS  Google Scholar 

  • Bingham P.M. (1981). Cloning of DNA sequences from the white locus of Drosophila melanogaster by a novel and general method. Cell 25, 693–704.

    Article  PubMed  CAS  Google Scholar 

  • Boschert U. and Fischbach K.-F. (1987). Mutants with irregular optic chiasms in Drosophila melanogaster. In New Frontiers in Brain Research, eds: N. Eisner, O. Creutzfeld. Thieme Verlag Stuttgart.

    Google Scholar 

  • Bülthoff H. (1982). Drosophila mutants disturbed in visual orientation. II. Mutants affected in movement and position computation. Biol. Cybern. 41, 71–77.

    Article  Google Scholar 

  • Bülthoff I. and Buchner E. (1985). Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. II. optomotor blind H31 and lobula plate-less N684, visual mutants. J. Comp. Physiol. A 156, 25–34.

    Article  Google Scholar 

  • Campos-Ortega J.A. and Strausfeld N.J. (1972). Columns and layers in the second synaptic region of the fly’s visual system. The case for two superimposed neuronal architectures. In Information processing in the visual system of arthropods. Ed. R. Wehner. Springer Verlag. Berlin Heidelberg New York.

    Google Scholar 

  • Chikaraishi D.M. (1988). Characteristics of Brain Messenger RNAs. In From message to mind. Eds. S.S. Easter Jr., K.F. Barald, and B.M. Carlson. Sinauer Associates, Inc. Mass.

    Google Scholar 

  • Campos A.R., Grossman D., and White K. (1985). Mutant Alleles at the Locus elav in Drosophila melanogaster lead to Nervous System Defects. A Developmental-Genetic Analysis. J. Neurogenetics 2, 197–218.

    Article  CAS  Google Scholar 

  • Coombe P.E. and Heisenberg M. (1986). The structural brain mutant Vacuolar medulla of Drosophila melanogaster with specific behavioral defects and cell degeneration in the adult. J. Neurogenetics 3, 135–158.

    Article  CAS  Google Scholar 

  • Dudai Y. and Zvi S. (1985). Multiple defects in the activity of adenylate cyclase from the Drosophila memory mutant rutabaga. J. Neurochem. 45, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Feiler, R., Harris, W.A., Kirschfeld, K., Wehrhahn, C. and Zuker, C.S. (1988): Targeted misexpression of a Drosophila opsin gene leads to altered visual function. Nature 333, 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Fischbach, K.-F. (1983a). Neural cell types surviving congenital sensory deprivation in the optic lobe of Drosophila melanogaster: Dev. Biol. 95, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Fischbach, K.-F. (1983b). Neurogenetik am Beispiel des visuellen Systems von Drosophila melanogaster. Habilitation, Würzburg.

    Google Scholar 

  • Fischbach, K.-F. (1985). Neurogenetics of the visual system of Drosophila melanogaster. Biol. Chem. Hoppe-Seyler 336(2), 114–115.

    Google Scholar 

  • Fischbach K.-F. and Dittrich A.P.M. (1988). The optic lobe of Drosophila melanogaster. A Golgi analysis of wild-type structure. Cell Tissue Res., in press.

    Google Scholar 

  • Fischbach K.-F. and Heisenberg M. (1981). Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc. Natl. Acad. Sci. USA 78: 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  • Fischbach K.-F. and Heisenberg M. (1984). Neurogenetics and behaviour in Insects. J. exp. Biol. 112: 65–93.

    Google Scholar 

  • Fischbach K.-F. and Lyly-Hünerberg I. (1983). Genetic dissection of the anterior optic tract. Cell Tiss. Res. 231: 551–563.

    CAS  Google Scholar 

  • Fischbach, K.-F. and Technau, G. (1984). Cell degeneration in the developing optic lobes of the sine oculis and small optic lobes mutants of Drosophila melanogaster. Dev. Biol. 104: 219–239.

    Article  PubMed  CAS  Google Scholar 

  • Fischbach K.-F. and Technau G.M. (1987). Mutant analysis of optic lobe development in Drosophila. In New Frontiers in Brain Research. Eds: N. Eisner, O. Creutzfeld. Thieme Verlag Stuttgart.

    Google Scholar 

  • Fischbach K.-F., Boschert U., Barleben F., Houbé B., and Rau T. (1987a). New alleles of structural brain mutants of Drosophila melanogaster derived from a dysgenic cross. J. Neurogenetics 4, 126–128.

    Google Scholar 

  • Fischbach K.-F., Houbé B., Boschert U., Barleben F., and Gschwander B. (1987b). Structural mutants of the visual system of Drosophila melanogaster derived from a dysgenic cross. J. Neurogenetics 4, 128–130.

    Google Scholar 

  • Gierer A. (1987). Directional cues for growing axons forming the retinotectal projection. Development 101, 479–489.

    Google Scholar 

  • Götz K.G. (1983). Genetics and ontogeny of behaviour. Genetic defects of visual orientation in Drosophila. Verh. Dtsch. Zool. Ges. 1983, 83–99.

    Google Scholar 

  • Hall J.C. (1982). Genetics of the nervous system in Drosophila. Quart. Rev.Biophys. 15, 223–479.

    Article  CAS  Google Scholar 

  • Hall J.C. (1986). Learning and rhythms in courting, mutant Drosophila. Trends Neurosci. 9, 414–418.

    Article  Google Scholar 

  • Heidenreich D. (1982). Die Genetik der Mutante minibrain von Drosophila melanogaster. Diplomthesis, Würzburg.

    Google Scholar 

  • Heisenberg M. and Böhl K. (1979). Isolation of anatomical brain mutants of Drosophila by histological means. Z. Naturforsch. 34, 143–147.

    Google Scholar 

  • Heisenberg M. and Büchner, E. (1977). The rôle of retinula cell types in visual behavior of Drosophila melanogaster. J. comp. Physiol. 117, 127–162.

    Article  Google Scholar 

  • Heisenberg M. and Götz K.G. (1975). The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. Comp. Physiol. 98, 217–241.

    Article  Google Scholar 

  • Heisenberg M. and Wolf R. (1984). Vision in Drosophila. Genetics of microbehavior. Springer Verlag. Berlin. Heidelberg. New York.

    Google Scholar 

  • Heisenberg M., Wonneberger R., and Wolf, R. (1978). optomotor blind H31-A Drosophila mutant of the lobula plate giant neurons. J.Comp.Physiol. A 124, 287–296.

    Article  Google Scholar 

  • Hofbauer A. (1979). Die Entwicklung der optischen Ganglien bei Drosophila melanogaster. Dissertation Univ Freiburg.

    Google Scholar 

  • Jacob, K.G., Willmund, R., Folkers, E., Fischbach, K.-F. und Spatz, H.Ch. (1977). T-maze phototaxis of Drosophila melanogaster and several mutants in the visual system. J. Comp. Physiol. 116, 209–225.

    Article  Google Scholar 

  • Jäger R. (1988). Isolierung neuer struktureller Gehirnmutanten auf dem X-Chromosom von Drosophila melanogaster mit Röntgenmutagenese. Dipl. Thesis, Univ Freiburg.

    Google Scholar 

  • Jäger R. und Fischbach K.-F. (1987). Some improvements of the Heisenberg-Böhl method for mass histology of Drosophila heads. DIS 66, 162–165.

    Google Scholar 

  • John B. and Miklos G.L.G. (1988). The eukaryote genome in development and evolution. Allen & Unwin. London.

    Google Scholar 

  • Kaltenbach E. (1988). Phänotypische Charakterisierung der Mutante minibrain UB913 von Drosophila melanogaster. Dipl. thesis. Univ Freiburg.

    Google Scholar 

  • Kamb A., Iverson L.E., and Tanouye M.A. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann R., Dietrich U., Jiménez F., Campos-Ortega J.A. (1981). Mutations of early mutagenesis in Drosophila. Wilhelm Roux’s Arch 190, 226–229.

    Article  Google Scholar 

  • Levy L.S. and Manning J.E. (1981). Messenger RNA sequence complexity and homology in developmental stages of Drosophila. Dev. Biol. 85, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Lipshitz HD. and Kankel D.R. (1985). Specificity of gene action during central nervous system development in Drosophila melanogaster. Analysis of the lethal(1) optic ganglion reduced locus. Dev. Biol. 108, 56–77.

    Article  PubMed  CAS  Google Scholar 

  • Livingston M.S., Sziber P.P., and Quinn W.G. (1984). Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37, 205–215.

    Article  Google Scholar 

  • Livinstone M.S. (1985). Genetic dissection of Drosophila adenylate cyclase. Proc. Natl. Acad. Sci. USA 82, 5992–5996.

    Article  Google Scholar 

  • Livinstone M.S. and Tempel B.L. (1983). Genetic dissection of monoamine transmitter synthesis in Drosophila. Nature 303, 67–70.

    Article  Google Scholar 

  • Meinertzhagen I.A. (1973). Development of the compound eye and optic lobe of insects, pp. 51–104 in Developmental neurobiology of arthropods, ed. D. Young. Cambridge University Press.

    Google Scholar 

  • Merriam, J. (1984). Drosophila melanogaster (Cloned DNA). In Genetic maps. (Ed. O’Brien, S. J.) CSH Laboratory 3, 304-308.

    Google Scholar 

  • Meyerowitz E.M. and Kankel D.R. (1978). A genetic analysis of visual system development in Drosophila melanogaster. Dev. Biol. 62, 112–142.

    Article  PubMed  CAS  Google Scholar 

  • Miklos G.L.G., Kelly L.E., Coombe P.E., Leeds C, and Lefèvre G. (1987). Localization of the genes shaking-B, small optic lobes, sluggish-A, and stress-sensitive-C to a well-defined region on the X-chromosome of Drosophila melanogaster. J. Neurogenetics 4, 1–19.

    Article  CAS  Google Scholar 

  • Miklos G.L.G., Yamamoto, M.T., Davies J., Pirrotta V. (1988). Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85, 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  • Mimura K. (1987). Two types of very long visual fibers found in the optic lobe of the flesh-fly, Boettcherisca peregrina. Cell Tissue Res. 250, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Nässel D.R. and Sivasubramanian P. (1983). Neural differentiation in fly CNS transplants cultured in vivo. J. Exp. Zool. 225, 301–310.

    Article  Google Scholar 

  • O’Kane C.J. and Gehring W.J. (1987). Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127.

    Article  PubMed  Google Scholar 

  • Paschma R. (1982). Strukturelle und funktionelle Defekte der Drosophila-Mutante lobulaplate-less N684. Dipl. Thesis. Univ Würzburg.

    Google Scholar 

  • Pirrotta V., Hardfield C., and Pretorius G.H.J. (1983a). Microdissection and cloning of the white locus and the 3B1-3C2 region of the Drosophila X chromosome. EMBO J. 2, 927–934.

    PubMed  CAS  Google Scholar 

  • Pirrotta V., Jäckle H., and Edstrom J.E. (1983b). Microcloning of microdissected chromosome fragments, p.1–17 In Genetic Engineering. Principles and Methods. Vol.5. Eds. Setlow J.K., Hollaender A. Plenum Press New York. London.

    Google Scholar 

  • Pongs, O., Kecskemethy, N., Müller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H.H., Canal, I., Llamazares, S. and Ferrús, A. (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila EMBO J. 7, 1087–1096.

    PubMed  CAS  Google Scholar 

  • Power M.E. (1943). The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster. J. Exp. Zool. 94, 33–71.

    Article  Google Scholar 

  • Rubin G.M., Kidwell M.G., Bingham P.M. (1982). The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations. Cell 29, 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Steller H., Fischbach K.-F., und Rubin G.M. (1987). Disconnected: A locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50, 1139–1153.

    Article  PubMed  CAS  Google Scholar 

  • Stent G.S. (1981). Strength and weakness of the genetic approach to the development of the nervous system. Ann. Rev. Neurosci. 4, 163–194.

    Article  PubMed  CAS  Google Scholar 

  • Stuermer C.A.O. (1988). The trajectories of regenerating retinal axons in the goldfish. I. A comparison of normal and regenerated axons at late regeneration stages. J. Comp. Neurol. 267, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Tempel B.L., Jan Y.N., and Jan L.Y. (1988). Cloning of a probable potassium channel gene from mouse brain. Nature 332, 837–839.

    Article  PubMed  CAS  Google Scholar 

  • Tempel B.L., Livingstone M.S. and Quinn W.G. (1984). Mutations in the dopa decarboxylase gene affect learning in Drosophila. Proc. Natl. Acad. Sci. USA 81, 3577–3581.

    Article  PubMed  CAS  Google Scholar 

  • Tempel B.L., Papazian D.M., Schwarz, T.L., Jan, Y.N. and Jan, L.Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775.

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.B. and Wyman R.J. (1982). A mutation in Drosophila alters normal connectivity between two identified neurones. Nature 298, 650–651.

    Article  PubMed  CAS  Google Scholar 

  • Tix S. and Technau G.M. (1987). Pioneer neurones in the optic lobes and imaginal discs of Drosophila melanogaster. In New Frontiers in Brain Research, eds: N. Eisner, O. Creutzfeld. Thieme Verlag Stuttgart.

    Google Scholar 

  • Tix S. and Technau G.M. (1988). Pre-existing neuronal pathways in the developing optic lobes of Drosophila melanogaster. Development (in press).

    Google Scholar 

  • Wolf R. and Heisenberg M. (1986). Visual orientation in motion-blind flies is an operant behaviour. Nature, 323, 154–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischbach, KF. et al. (1989). Developmental Studies on the Optic Lobe of Drosophila Melanogaster Using Structural Brain Mutants. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics