Advertisement

Space Charge Effects

  • S. Roy Morrison
Chapter
  • 216 Downloads

Abstract

Separation of charge into double layers is a common occurrence at a solid surface. At times the phenomenon can be interpreted simply in terms of two plane sheets of charge. On a metal with an adsorbed layer of oxygen, where the oxygen has a large negative partial charge and the surface layer of the metal an equal and opposite positive charge, the system can be viewed to a good first approximation as such a double layer, here composed of two parallel charged planes, as sketched on the left in Figure 2.1. If an insulating oxide layer grows between the positively charged metal and the now ionosorbed oxygen ions, the separation of the two sheets of charge becomes greater, but to a reasonable approximation, with a coherent uncharged oxide, the configuration can still be viewed as two planar sheets of charge.

Keywords

Double Layer Surface State Space Charge Fermi Energy Space Charge Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 2

  1. 1.
    A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces ( Interscience, New York, 1965 ).Google Scholar
  2. 2.
    D. R. Frankl, Electrical Properties of Semiconductor Surfaces ( Pergamon, London, 1967 ).Google Scholar
  3. 3.
    P. Mark, Surf. Sci. 25, 192 (1971).CrossRefGoogle Scholar
  4. 4.
    P. B. Weisz, J. Chem. Phys. 21, 1531 (1953).CrossRefGoogle Scholar
  5. 5.
    M. Wolovelsky, J. Levy, Y. Goldstein, A. Many, S. Z. Weisz, and D. Resto, Surf. Sci. 171, 442 (1986).CrossRefGoogle Scholar
  6. 6.
    J. A. Stratton, Electromagnetic Theory ( McGraw-Hill, New York, 1971 ).Google Scholar
  7. 7.
    J. N. Zemel and M. Kaplett, Surf. Sci. 13, 17 (1969).CrossRefGoogle Scholar
  8. 8.
    S. R. Morrison, Adv. Catal. 7, 259 (1955).CrossRefGoogle Scholar
  9. 9.
    D. H. Lindley and P. C. Banbury, J. Phys. Chem. Solids 15, 200 (1959).Google Scholar
  10. 10.
    A. E. Yunovich, in Surface Properties of Semiconductors, p. 88, edited by E. N. Frumkin ( Consultants Bureau, New York, 1964 ).Google Scholar
  11. 11.
    S. R. Morrison, Phys. Rev. 114, 437 (1959).CrossRefGoogle Scholar
  12. 12.
    S. R. Morrison, J. Vac. Sci. Technol. 7, 84 (1970).Google Scholar
  13. 13.
    S. R. Morrison, Phys. Rev. 102, 1297 (1956).CrossRefGoogle Scholar
  14. 14.
    H. Gerischer, Surf. Sci. 18, 97 (1969).CrossRefGoogle Scholar
  15. 15.
    R. R. Dogonadze, A. M. Kuznetsoo, and A. A. Chernenko, Russ. Chem. Rev. 34, 759 (1965).CrossRefGoogle Scholar
  16. 16.
    R. A. Marcus, J. Chem. Phys. 24, 966 (1956).CrossRefGoogle Scholar
  17. 17.
    S. G. Christov, Ber. Bunsenges. Phys. Chem. 79, 357 (1975).Google Scholar
  18. 18.
    H. Gerischer, in Vol. 1 of Advances in Electrochemistry and Electrochemical Engineering, p. 139, edited by P. Delahay ( Interscience, New York, 1961 ).Google Scholar
  19. 19.
    J. M. Hale, in Reactions of Molecules at Electrodes, p. 229, edited by N. S. Hush ( Wiley, London, 1971 ).Google Scholar
  20. 20.
    R. Menuning and F. Moellers, Ber. Bunsenges. Phys. Chem. 76, 475 (1972).Google Scholar
  21. 21.
    R. A. Marcus, J. Chem. Phys. 43, 679 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. Roy Morrison
    • 1
  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations