Advertisement

Introduction

  • S. Roy Morrison
Chapter

Abstract

There have been two dominant models used in describing the chemical and electronic behavior of a surface. One is the atomistic model, or the “surface molecule” model; the other is the band model, often called for emphasis the “rigid band” model. The atomistic model has been preferred in general in discussions of the chemical processes at a solid surface; the rigid band model is often preferred in discussions of electron exchange between the solid (especially a semiconductor) and a surface group, where, for example, the conductivity of the solid is changed. The atomistic model describes the solid surface in terms of surface sites, atoms, or groups of atoms at the surface, essentially ignoring the band structure of the solid. The rigid band model describes the surface in terms of surface states, localized electronic energy levels available at the surface, to a great extent ignoring the microscopic details of atom/atom interaction between the surface species and its neighboring substrate atom.

Keywords

Surface State Surface Site Surface Atom Atomic Orbital Lewis Acid Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Volkenshtein, The Electronic Theory of Catalysis on Semiconductors ( MacMillan, New York, 1963 ).Google Scholar
  2. 2.
    S. G. Davison and J. P. Levine. 25 of Solid State Physics, edited by F. Seitz and D. Turnbull ( Academic Press, New York, 1970 ).Google Scholar
  3. 3.
    W. M. H. Sachtler and P. Van der Plank, Surf Sci. 18, 62 (1969).CrossRefGoogle Scholar
  4. 4.
    O. Johnson, J. Catal 28, 503 (1973).CrossRefGoogle Scholar
  5. 5.
    Z. Knor, Adv. Catal 22, 51 (1972).CrossRefGoogle Scholar
  6. 6.
    J. R. Schrieffer and P. Soven, Phys. Today 28, 24 (1975).CrossRefGoogle Scholar
  7. 7.
    J. W. Gadzuk, Surf Sci. 43, 44 (1974).CrossRefGoogle Scholar
  8. 8.
    M. J. Kelly, Surf Sci. 43, 587 (1974).CrossRefGoogle Scholar
  9. 9.
    D. R. Penn, Surf. Sci 39, 333 (1973).CrossRefGoogle Scholar
  10. 10.
    J. C. Slater and K. H. Johnson, Phys. Today 27, 34 (1974).CrossRefGoogle Scholar
  11. 11.
    H. H. Ibach, K. Horn, R. Dorn, and H. Luth, Surf. Sci 38, 433 (1973).CrossRefGoogle Scholar
  12. 12.
    F. Beck and H. Gerischer, Z. Electrochem 63, 943 (1959).Google Scholar
  13. 13.
    S. R. Morrison, Prog. Surf Sci 1, 105 (1971).CrossRefGoogle Scholar
  14. 14.
    H. Gerischer, Surf. Sci 18, 97 (1969).CrossRefGoogle Scholar
  15. 15.
    M. Green and M. J. Lee, in Vol. 1 of Solid State Surface Science, edited by M. Green ( Marcel Dekker, New York, 1969 ).Google Scholar
  16. 16.
    P. Mark, J. Phys. Chem. Solids 29, 689 (1968).CrossRefGoogle Scholar
  17. 17.
    D. A. Dowden, Catal. Rev 5, 1 (1971).Google Scholar
  18. 18.
    S. Siegel, Adv. Catal 16, 123 (1966).CrossRefGoogle Scholar
  19. 19.
    J. P. Muscat and D. M. Newns, Prog. Surf. Sci 9, 1 (1978).CrossRefGoogle Scholar
  20. 20.
    R. T. Sanderson, Chemical Periodicity ( Van Nostrand Reinhold, New York, 1971 ).Google Scholar
  21. 21.
    F. Seel, Atomic Structure and Chemical Bonding, p. 38 ( Wiley, New York, 1963 ).Google Scholar
  22. 22.
    J. C. Phillips, Surf. Sci 37, 24 (1973).CrossRefGoogle Scholar
  23. 23.
    H. Pines and J. Manassen, Adv. Catal 16, 49 (1966).CrossRefGoogle Scholar
  24. 24.
    K. Tanabe, Solid Acids and Bases ( Academic Press, New York, 1970 ).Google Scholar
  25. 25.
    S. R. Morrison, Surf. Sci 50, 329 (1975).CrossRefGoogle Scholar
  26. 26.
    J. W. May, Adv. Catal 21, 151 (1970).CrossRefGoogle Scholar
  27. 27.
    H. Ohtani, C.-T. Kao, M. A. van Hove, and G. A. Somorjai, Prog. Surf. Sci 23, 155 (1986).CrossRefGoogle Scholar
  28. 28.
    M. Prettre and B. Claudel, Elements of Chemical Kinetics ( Gordon and Breach, London, 1970 ).Google Scholar
  29. 29.
    J. C. Phillips, Surf. Sci 44, 290 (1974).CrossRefGoogle Scholar
  30. 30.
    G. Blyholder and R. W. Sheets, J. Catal 39, 152 (1975).CrossRefGoogle Scholar
  31. 31.
    L. Pauling, The Nature of the Chemical Bond ( Cornell University Press, Ithaca, N.Y., 1960 ).Google Scholar
  32. 32.
    H. P. Boehm, Discuss Faraday Soc. 52, 264 (1971).CrossRefGoogle Scholar
  33. 33.
    J. T. Kummer and Y. Y. Yao, Can. J. Chem 45, 421 (1967).CrossRefGoogle Scholar
  34. 34.
    R. Nosker, P. Mark, and J. D. Levine, Surf. Sci 19, 291 (1970).CrossRefGoogle Scholar
  35. 35.
    G. I. Young, J. Colloid. Sci 13, 67 (1958).CrossRefGoogle Scholar
  36. 36.
    H. S. Taylor, J. Am. Chem. Soc 53, 578 (1931).CrossRefGoogle Scholar
  37. 37.
    L. D. Schmidt, Catal. Rev. Sci. Eng 9, 115 (1974).CrossRefGoogle Scholar
  38. 38.
    R. D. Giles, J. A. Harrison, and H. R. Thrisk, J. Electroanal. Chem 20, 47 (1969).CrossRefGoogle Scholar
  39. 39.
    J. M. Thomas, Adv. Catal 19, 293 (1969).CrossRefGoogle Scholar
  40. 40.
    B. Lang, R. W. Joyner, and G. A. Somorjai, Surf. Sci 30, 454 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. Roy Morrison
    • 1
  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations