Skip to main content

Gas Transport in the Blood

  • Chapter
Squid as Experimental Animals

Abstract

The transport of respiratory gases to and from gas exchange sites is clearly the central function of the blood in squid. In view of the squid’s inability to live without oxygen for even a brief period (Dykens and Mangum, 1978), one would expect the squid gas transport system to be highly adapted to maintain an adequate supply. The cephalopod oxygen transport system has been characterized as a rather poor one, primarily on the grounds that the blood oxygen carrying capacity, in this case a simple function of concentration of the carrier molecule hemocyanin (Hc), is lower than in most fishes (e.g., O’Dor and Webber, 1986). This view (often overtly tongue-in-cheek) is a welcome departure from the attitude that a physiological system, regardless of its properties, must be the best of all possible ones under the particular set of circumstances. But it also ignores the considerable genetic constraints placed upon the evolution of one taxon from another. The Order Teuthoidea evolved from more primitive cephalopods that almost certainly already transported oxygen bound to a molecule that resembles present day teuthoid Hc. Moreover, the Class Cephalopoda did not evolve from the same kinds of animals that gave rise to the fishes, which may well have transmitted the genetic information for only hemoglobins. It is likely that cephalopods evolved from animals that relied on a distinctive molluscan type of Hc for their metabolic oxygen supply (Mangum et al.,1987). He is not carried inside a blood cell but is dissolved in the blood. Hc is a copper containing respiratory pigment and the copper gives the oxygenated form (oxyHc)(HcO2) a blue color. The deoxygenated form (deoxyHc) is colorless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bates, R. G. and Macaskill J. B., 1975, Acid-base measurements in seawater, in: Analytical Methods in Oceanography, ( T. R. P. Gibb, ed.), pp. 110–123, American Chemical Society, Washington D.C.

    Chapter  Google Scholar 

  • Bonaventura, C., Bonaventura, J., Miller, K. I., and Van Holde, K. E., 1981, Hemocyanin of the chambered nautilus: structure-function relationships, Arch. Biochem. Biophys. 211: 589–598.

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura, J., Bonaventura, C., and Sullivan, B., 1977, Properties of oxygen-binding domains isolated from subtilisin digests of six molluscan hemocyanins, in: Structure and Function of Haemocyanin, ( J. V. Bannister, ed.), pp. 206–216, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bridges, C. R., 1981, PO, and oxygen content measurement on blood samples; using polarographic oxygen sensors, in: Polarographic Oxygen Sensors, ( E. Gnaiger and H. Forstger, eds.), pp. 219–223, Springer-Verlag, Berlin.

    Google Scholar 

  • Brix, O., 1983, Giant squids may die when exposed to warm water currents, Nature 303: 422–423.

    Article  CAS  Google Scholar 

  • Brix, O., Bardgard, A., Cau, A., Colosimo, A., Condo, S., and Giardina, B., 1989, Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution, J. Exp. Zool. in press.

    Google Scholar 

  • Brix, O., Lykkeboe, G., and Johansen, K., 1981, The significance of the linkage between the Bohr and Haldane effects in cephalopod bloods, Resp. Physiol. 44: 177–186.

    Article  CAS  Google Scholar 

  • Burnett, L. E., Scholnik, D. A., and Mangum, C. P., 1988, Temperature sensitivity of molluscan and arthropod hemocyanins, Biol. Bull. 174: 153–162.

    Article  CAS  Google Scholar 

  • Cameron, J. N., 1986, Principles of Physiological Measurement, Academic Press, Orlando, Florida.

    Google Scholar 

  • Colman, C. H. and Longmuir, I. S., 1963, A new method for registration of oxyhemoglobin dissociation curves, J. Appl. Physiol. 18: 420–423.

    PubMed  CAS  Google Scholar 

  • deFur, P. L., Mangum, C. P., Reiber, C. L., and Reese J. E. F., 1988, Respiratory responses of the blue crab Callinectes sapidus to longterm hypoxia, (in review).

    Google Scholar 

  • DePhillips, H. A., Nickerson, K. W., Johnson, M., and Van Holde, K. E., 1969, Physical studies of hemocyanins. IV. Oxygen-linked dissociation of Loligo pealei hemocyanin, Biochem. 8: 3665–3672.

    Article  CAS  Google Scholar 

  • Dykens, J. A. and Mangum, C. P., 1979, The design of cardiac muscle and the mode of metabolism in molluscs, Comp. Biochem. Physiol. 62A: 549–554.

    Article  Google Scholar 

  • Gielens, C., Benoy, C., Préaux, G., and Lontie, R., 1986, Presence of only seven functional units in the polypeptide chain of the haemocyanin of the cephalopod Octopus vulgaris, in: Invertebrate Oxygen Carriers, ( B. Linzen, ed.), pp. 221–222, Springer-Verlag, Berlin.

    Google Scholar 

  • Gielens, C., Bosman, F., Préaux, G., and Lontie, R., 1983, Structural studies by limited proteolysis of the haemocyanin of Sepia officinalis, Life Chem. Rept. Suppl. 1: 121–128.

    CAS  Google Scholar 

  • Gill, S. J., 1981, Measurement of oxygen binding by means of a thin-layer optical cell, Methods in Enzymology 76: 427–437

    Article  PubMed  CAS  Google Scholar 

  • Gill, S. J., 1981, Measurement of oxygen binding by means of a thin-layer optical cell, (E. Antonini. L. Rossi-Bernardi, and E. Chiancone, eds.), Academic Press, New York.

    Google Scholar 

  • Henderson, L. J., 1928, Blood. A Study in General Physiology, Yale Univ. Press, New Haven Connecticut.

    Google Scholar 

  • Houlihan, D. F., Inns, A. J., Wells, M. J., and Wells, J., 1982, Oxygen consumption and blood gases of Octopus vulgaris in hypoxic conditions, J. Comp. Physiol. 148: 35–40.

    Google Scholar 

  • Howell, B. J., 1989, personal commun.

    Google Scholar 

  • Howell, B. J. and Gilbert, D. L., 1976, pH-temperature dependence of the hemolymph of the squid, Loligo pealei, Comp. Biochem. Physiol. 55A: 287–289.

    Google Scholar 

  • Hughes, G. M., O’Neill, J. G., and van Aardt, W. J., 1976, An electrolytic method for determining oxygen dissociation curves using small blood samples: the effect of temperature on trout and human blood, J. Exp. Biol. 65: 21–38.

    PubMed  CAS  Google Scholar 

  • Imai, K., 1981, Measurement of accurate oxygen equilibrium curves by an automatic oxygenation apparatus, Methods in Enzymology 76: 438–439

    Article  PubMed  CAS  Google Scholar 

  • Imai, K., 1981, Measurement of accurate oxygen equilibrium curves by an automatic oxygenation apparatus, (E. Antonini, L. Rossi-Bernardi and E. Chiancone, eds.), Academic Press, New York.

    Google Scholar 

  • Johansen, K., 1965, Cardiac output in the large cephalopod Octopus dofleini, J. Exp. Biol. 42: 475–480.

    PubMed  CAS  Google Scholar 

  • Johansen, K., Brix, O., and Lykkeboe, G., 1982, Blood gas transport in the cephalopod, Sepia officinalis, J. Exp. Biol. 99: 331–338.

    Google Scholar 

  • Johansen, K. and Lenfant, C., 1966, Gas exchange in the cephalopod, Octopus dofleini, Amer. J. Physiol. 210: 910–918.

    PubMed  CAS  Google Scholar 

  • Johansen, K., Redmond, J. R., and Bourne, G. B., 1978, Respiratory exchange and transport of oxygen in Nautilus pompilius, J. Exp. Zool. 205: 27–36.

    Article  Google Scholar 

  • Keilin, D. and Hartree, E. F., 1951, Relationship between haemoglobin and erythrocruorin, Nature 168: 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, K. H., Ramette, R. W., Culberson, C. H., and Bates, R. G., 1977, Determination of hydrogen ion concentrations in seawater from 5 to 40 °C: standard potentials at salinities from 20 to 45%0, Anal. Chem. 49: 29–34.

    Article  CAS  Google Scholar 

  • Lamy, J., Lamy, J. N., Leclerc, M., Compin, S., Miller, K. I., and Van Holde, K. E., 1986, Preliminary results on the structure of Octopus dofleini hemocyanin, in: Invertebrate Oxygen Carriers, ( B. Linzen, ed.), pp. 231–235, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Lenfant, C. and Johansen, K. 1965, Gas transport by hemocyanin-containing blood of the cephalopod Octopus dofleini, Amer. J. Physiol. 209: 991–998.

    PubMed  CAS  Google Scholar 

  • Lontie, R., 1977, On the active site of molluscan haemocyanin and of tyrosinases. Opening address, in: Structure and Function of Haemocyanin, ( J.V. Bannister, ed.), pp. 150–155, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Lykkeboe, G., Brix, O., and Johansen, K., 1980, Oxygen-linked CO, binding independent of pH in cephalopod blood, Nature 287: 330–331.

    Article  PubMed  CAS  Google Scholar 

  • Lykkeboe, G. and Johansen, K., 1982, A cephalopod approach to rethinking about the importance of the Bohr and Haldane effects, Pacif. Sci. 36: 305–314.

    Google Scholar 

  • Mangum, C. P., 1980, Respiratory function of the hemocyanins, Amer. Zool. 20: 19–38.

    CAS  Google Scholar 

  • Mangum, C. P., 1981, The influence of inorganic ions and pH on HcOZ transport systems, in: Invertebrate Oxygen-binding Proteins, ( J. Lamy and J. Lamy, eds.), pp. 811–822, Marcel Dekker, New York.

    Google Scholar 

  • Mangum, C. P., 1982, On the relationship between P50 and the mode of gas exchange in tropical crustaceans, Pacif. Sci. 36: 403–410.

    Google Scholar 

  • Mangum, C. P., 1983a, Adaptability and inadaptability among HcOZ transport systems: an apparent paradox, Life Chem. Rept. Suppl. 1: 335–352.

    CAS  Google Scholar 

  • Mangum, C. P., 1983b, Oxygen transport in the blood, in: Biology of the Crustacea ( L. H. Mantel, ed.), pp. 373–429, Academic Press, New York.

    Google Scholar 

  • Mangum, C. P., 1985, Oxygen transport in the invertebrates, Amer. J. Physiol. 248: R505 - R514.

    PubMed  CAS  Google Scholar 

  • Mangum, C. P., 1986, Osmoregulation in marine and estuarine animals: its influence on respiratory gas exchange and transport, Boll. Zool. 53: 1–7.

    Article  Google Scholar 

  • Mangum, C. P., 1989 unpublished data.

    Google Scholar 

  • Mangum, C. P. and Burnett, L. E., 1986, The CO, sensitivity of the hemocyanins and its relationship to Cl sensitivity, Biol. Bull. 171: 248–263.

    Article  CAS  Google Scholar 

  • Mangum, C. P. and Lykkeboe, G., 1979, The influence of inorganic ions and pH on the oxygenation properties of the blood in the gastropod mollusc Busycon canaliculatum, J. Exp. Zool. 207: 417–430.

    Article  CAS  Google Scholar 

  • Mangum, C. P., McMahon, B. R., deFur, P. L., and Wheatly, M. G., 1985, Gas exchange, acid-base balance, and the oxygen supply to the tissues during a molt of the blue crab Callinectes sapidus, J. Crust. Biol. 5: 188–206.

    Article  Google Scholar 

  • Mangum, C. P., Miller, K. I., Scott, J. L., Van Holde, K. E., and Morse, M. P., 1987, Bivalve hemocyanin: structural, functional and phylogenetic relationships, Biol. Bull. 173: 205–221.

    Article  CAS  Google Scholar 

  • Mangum, C. P. and Polites, G., 1980, Oxygen uptake and transport in the prosobranch mollusk Busycon canaliculatum. I. Gas exchange and the response to hypoxia, Biol. Bull. 158: 77–90.

    Article  Google Scholar 

  • Mangum, C. P. and Rainer, J. S., 1988, The relationship between subunit composition and oxygen binding of blue crab hemocyanin, Biol. Bull. 174: 77–82.

    Article  CAS  Google Scholar 

  • Mangum, C. P. and Shick, J. M., 1972, The pH of body fluids of marine invertebrates, Comp. Biochem. Physiol. 42A: 693–698.

    Article  CAS  Google Scholar 

  • Mangum, C. P. and Towle, D. W., 1982, The nautilus siphuncle as an ion pump, Pacif. Sci. 36: 273–282.

    CAS  Google Scholar 

  • Mangum, C. P., Terwilliger, R. C., Terwilliger, N. B., and Hall, R., 1983, Oxygen binding of intact coelomic cells and extracted hemoglobin of the echiuran Urechis caupo, Comp. Biochem. Physiol. 76A: 253–257.

    Article  Google Scholar 

  • Markl, J., 1986, Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods, Biol. Bull. 171: 90–115.

    Article  CAS  Google Scholar 

  • Mauro, N. A. and Mangum, C. P., 1982a, The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. I. Intraspecific responses to seasonal differences in temperature, J. Exp. Zool. 219: 179–188.

    Article  Google Scholar 

  • Mauro, N. A. and Mangum, C. P., 1982b,. The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. II. Interspecific adaptations to latitudinal change, J. Exp. Zool. 219: 189–196.

    Google Scholar 

  • McMahon, B. R., 1984, Functions and functioning of crustacean hemocyanin, in: Respiratory Pigments in Animals, ( J. Lamy, J-P. Truchot, and R. Gilles, eds.), pp. 35–58, Springer-Verlag, Berlin.

    Google Scholar 

  • McMahon, B. R., 1986, Oxygen binding by hemocyanin: compensation during activity and environmental change, in: Invertebrate Oxygen Carriers, ( B. Linzen, ed.), pp. 299–320, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Miller, K. I., 1985, Oxygen equilibria of Octopus dofleini hemocyanin, Biochem. 24: 4582–4586.

    Article  CAS  Google Scholar 

  • Miller, K. I., 1989, personal commun.

    Google Scholar 

  • Miller, K. I. and Mangum, C. P., 1988, An investigation of the nature of Bohr, Root and Haldane effects in Octopus dofleini hemocyanin, J. Comp. Physiol. 8: 547–552.

    Google Scholar 

  • Miller, K. I. and Van Holde, K. E., 1981, The effect of environmental variables on the structure and function of hemocyanin from Callianassa californiensis. I. Oxygen binding, J. Comp. Physiol. 143: 253–260.

    CAS  Google Scholar 

  • Miller, K. I. and Van Holde, K. E., 1986, Oxygen-linked dissociation and oxygen binding by subunits of Octopus dofleini hemocyanin, in: Invertebrate Oxygen Carriers ( B. Linzen, ed.), pp. 417–420, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Miller, K. I. and Van Holde, K. E., 1989, personal commun.

    Google Scholar 

  • Nickerson, K. W. and Van Holde, K. E., 1971, A comparison of molluscan and arthropod hemocyanin. I. Circular dichroism and absorption spectra, Comp. Biochem. Physiol. 64A: 433–436.

    Google Scholar 

  • O’Dor, R., Pörtner, H. O., and Shadwick, R. E., 1990, Squid as elite athletes: Locomotory, respiratory, and circulatory integration, this volume.

    Google Scholar 

  • O’Dor, R. K. and Webber, D. M., 1986, The constraints on cephalopods: why squid aren’t fish, Canad. J. Zool. 64: 1591–1605.

    Article  Google Scholar 

  • Parsons, T. R. and Parsons, W., 1924, Observations on the transport of carbon dioxide in the blood of some marine invertebrates, J. Gen. Physiol. 6: 153–166.

    Article  Google Scholar 

  • Pörtner, H. O., 1989, personal commun.

    Google Scholar 

  • Pörtner, H. O., 1990, A graphical presentation of the effects of pH in vitro and in vivo on oxygen binding by cephalopod haemocyanin, in preparation.

    Google Scholar 

  • Préaux, G., Vandamme, A., de Bethune, B., Jacobs, M-P., and Lontie, R., 1986, Hemocyanin-mRNA-rich fractions of cephalopodan decabrachia and of crustacea, their in vivo and in vitro translation, in: Invertebrate Oxygen Carriers ( B. Linzen, ed.), pp. 485–488, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Pytkowicz, R. M., Kester, D. R., and Burgener, B. C., 1966, Reproducibility of Ph measurements in seawater, Limnol. Oceanogr. 11: 417–419.

    Article  CAS  Google Scholar 

  • Redfield, A. C., 1966, Opening address, in: Physiology and Biochemistry of Haemocyanins, ( F. Ghiretti, ed.), pp. 1–4, Academic Press, London.

    Google Scholar 

  • Redfield, A. C., Coolidge, T., and Hurd, A. L., 1926, The transport of oxygen and carbon dioxide by some bloods containing hemocyanin, J. Biol. Chem. 69: 475–509.

    CAS  Google Scholar 

  • Redfield, A. C. and Goodkind, R., 1929, The significance of the Bohr effect in the respiration and asphyxiation of the squid, Loligo pealei, J. Exp. Biol. 6: 340–349.

    CAS  Google Scholar 

  • Redfield, A. C. and Ingalls, E. N., 1933, The oxygen dissociation curves of some bloods containing hemocyanin, J. Cell. Comp. Physiol. 3: 169–202.

    Article  CAS  Google Scholar 

  • Redmond, J. R., Bourne, G. B., and Johansen, K., 1978, Oxygen uptake by Nautilus pompilius, J. Exp. Zool. 205: 45–50.

    Article  Google Scholar 

  • Ricchelli, F., Filippi, B., Gobbo, S., Simoni, E., Tallandini, L., and Zatta, P., 1986, Functional and structural properties of the 50,000 D subunit of Octopus vulgaris hemocyanin, in: Invertebrate Oxygen Carriers, ( B. Linzen, ed.), pp. 235–239, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Richey, B., Decker, H., and Gill, S. J., 1983, A direct test of the linearity between optical density change and oxygen binding in hemocyanin, Life Chem. Rept. 1: 309–312.

    CAS  Google Scholar 

  • Riggs, A., 1951, The metamorphosis of hemoglobin in the bullfrog, J. Gen Physiol. 35: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, A. and Wohlbach, R. A., 1956, Sulfhydryl groups and the structure of hemoglobin, Gen. Physiol. 39: 585–605.

    Article  CAS  Google Scholar 

  • Root, R. W., 1931, The respiratory function of the blood of marine fishes, Biol. Bull. 61: 427–456.

    Article  CAS  Google Scholar 

  • Sanders, N. K., Arp, A. J., and Childress, J. J., 1988, Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans, Resp. Physiol. 71: 57–68.

    Article  CAS  Google Scholar 

  • Sick, H. and Gersonde, K., 1969, Method for continuous registration of 02-binding curves of hemoproteins by means of a diffusion chamber, Anal. Biochem. 32: 362–376.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, G. K. and Mangum, C. P., 1982, The relationship between the size and shape of an extracellular oxygen carrier and the capacity for oxygen transport, in: Physiology and Biochemistry of Horseshoe Crabs, ( J. Bonaventura, C. Bonaventura, and S. Tesh, eds.), pp. 173–188, Allan Liss, New York.

    Google Scholar 

  • Stumm, W. and Morgan, J. J., 1981, Aquatic chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Tallandini, L. and Salvato, B., 1981, Allosteric modulations in the oxygen binding of Octopus vulgaris hemocyanin, in: Invertebrate Oxygen-binding Proteins, ( J. Lamy and J. Lamy, eds.), pp. 727–738, Marcel Dekker, New York.

    Google Scholar 

  • Terwilliger, R. C. and Terwilliger, N. B., 1983, Oxygen binding domains in invertebrate hemoglobins, Life Chem. Rept. Suppl. 1: 227–238.

    CAS  Google Scholar 

  • Valeri, C. R., Zaroulis, C. G., and Marchoni, L., 1972, A simple method for measuring oxygen content in blood, J. Lab. Clin. Med. 79: 1035–1040.

    PubMed  CAS  Google Scholar 

  • van Bruggen, E. F. J., Schutter, W. G., van Breeman, J. F. L., Bijholt, M. N. C., and Wichertjes, T., 1981, Arthropod= and molluscan haemocyanins, in: Electron Microscopy of Proteins, ( J. R. Harris, ed.), pp. 1–38, Academic Press, London.

    Google Scholar 

  • Van Holde, K. E., 1983, Some unresolved problems concerning hemocyanins, Life Chem. Rept. 1: 403–412.

    Google Scholar 

  • Van Holde, K. E. and Cohen, L. B., 1965, Physical studies of hemocyanins. I. Characterization and subunit structure of Loligo pealei hemocyanin, Biochem. 3: 1803–1808.

    Google Scholar 

  • Van Holde, K. E. and Miller, K. I., 1982, Haemocyanins, Quart. Rev. Biophys. 15: 1–129.

    Article  Google Scholar 

  • Van Holde, K. E. and Miller, K. I., 1984, Cephalopod hemocyanins: structure and function, in: Respiratory Pigments in Animals ( J. Lamy, J-P. Truchot and R. Gilles, eds.), pp. 87–96, Springer-Verlag, Berlin.

    Google Scholar 

  • Van Holde, K. E. and Miller, K. I., 1985, Association-dissociation equilibria of Octopus hemocyanin, Biochem. 24: 4577–4582.

    Article  Google Scholar 

  • Vanderbeke, E., Cleuter, Y., Marbaix, G., Préaux, G., and Lontie, R., 1981, Isolation and translation of a haemocyanin-mRNA-containing fraction from Loligo vulgaris, Arch Int. Physiol. Biochem. 89: B135 - B136.

    Google Scholar 

  • Vanderbeke, E., Cleuter, Y., Marbaix, G., Préaux, G., and Lontie, R., 1982, Synthesis of haemocyanin in Xenopus laevis oocytes microinjected with the polyadenylated RNA fraction isolated from the gills of Sepia officinalis and Loligo vulgaris, Biochem. Int. 5: 23–29.

    CAS  Google Scholar 

  • Wells, M. J. and Wells, J., 1985, Ventilation volume and oxygen uptake by Nautilus, J. Exp. Biol. 118: 297–312.

    Google Scholar 

  • Wolf, G. and Decleir, W., 1981, A study of hemocyanin in Sepia officinalis: functional properties of the adult molecule, in: Invertebrate Oxygen-binding Proteins ( J. Lamy and J. Lamy, eds.), pp. 749–754, Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mangum, C.P. (1990). Gas Transport in the Blood. In: Gilbert, D.L., Adelman, W.J., Arnold, J.M. (eds) Squid as Experimental Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2489-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2489-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2491-9

  • Online ISBN: 978-1-4899-2489-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics