D.A.C. Device for the Characterisation of the Pressure-Dependence of Superconducting Transitions

  • J. Thomasson
  • F. Thomas
  • C. Ayache
  • I. L. Spain
  • M. Villedieu
Part of the NATO ASI Series book series (NSSB, volume 286)


We describe an experimental setup devoted to the study of superconducting transitions under hydrostatic high pressure. The setup combines a miniature Diamond Anvil Cell, ruby fluorescence-scale for measuring the pressure, and helium used as a pressure transmitting medium. Pressure homogeneity and shear stress free conditions were checked. Superconducting transitions are detected using an A.C. susceptibility technique. Two illustrative studies are presented: 1) the comparison of Tc(P) for lead under hydrostatic and non-hydrostatic conditions and 2) preliminary results for Tc(P) of the heavy-fermion superconductor CeCu2Si2.


Hydrostatic High Pressure Superconducting Transition Temperature Diamond Anvil Cell Pressure Homogeneity Detection Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.L. Spain and D.J. Dunstan, J. Phys. E: Sci. Instr., 22, 923 (1989).CrossRefGoogle Scholar
  2. [2]
    J.D. Barnett, S. Block and G.J. Piermarini, Rev. Sci. Instr., 44, 1 (1973).CrossRefGoogle Scholar
  3. [3]
    D.M. Adams, R. Appleby and S.K. Sharma, J. Phys. E: Sci. Instr., 9, 1140 (1976).CrossRefGoogle Scholar
  4. [4]
    M. Couach, A.F. Khoder and F. Monnier, Cryogenics, 25, 695 (1985).CrossRefGoogle Scholar
  5. [5]
    C.D. Motchenbacher and F.C. Fitchen, “Low Noise Electronic Design”, ed. John Wiley & Sons, 10 (1973).Google Scholar
  6. [6]
    L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii, “Electrodynamics of continuous media”, ed. Oxford Pergamon Press, 208-210 (1984).Google Scholar
  7. [7]
    Ibid, 121-123.Google Scholar
  8. [8]
    J. Thomasson, C. Ayache, I.L. Spain and M. Villedieu, J. Appl. Phys., 68(11). 5993 (1990).CrossRefGoogle Scholar
  9. [9]
    W. Assmus, W. Sun, G. Bruls, D. Weber, B. Wolf, B. Lüthi, M. Lang, U. Ahleim, A. Zahn and F. Steglich, Physica B 165&166, 379 (1990).CrossRefGoogle Scholar
  10. [10]
    M. Ishikawa, H.F. Braun and J.L. Jorda, Phys. Rev. B, 27(5), 3092 (1983).CrossRefGoogle Scholar
  11. [11]
    J.Y. Henry, private communication.Google Scholar
  12. [12]
    B. Bellarbi, A. Benoit, D. Jaccard, J.M. Mignot and H.F. Braun, Phys. Rev. B, 30(3), 1182 (1984).CrossRefGoogle Scholar
  13. [13]
    D. Jaccard, J.M. Mignot, B. Bellarbi, A. Benoit, H.F. Braun and J. Sierro, J. Magn. Magn. Mat., 47&48, 23 (1985).CrossRefGoogle Scholar
  14. [14]
    J. Röhler, J. Klug and K. Keulerz, J. Magn. Magn. Mat., 76&77, 340 (1988).CrossRefGoogle Scholar
  15. [15]
    F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov, Solid State Commun., 45(3), 215 (1983).CrossRefGoogle Scholar
  16. [16]
    F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov, J. Low. Temp. Phys., 57, 61 (1984).CrossRefGoogle Scholar
  17. [17]
    A. Eichler, K.R. Harms and F.W. Shaper, Physica B, 165&166, 353 (1990).Google Scholar
  18. [18]
    H. Takakura, K. Iki, H. Okita, Y. Uwatoko, G. Ooni, Y. Onuki and T. Komatsubara, J. Magn. Magn. Mat., 90&91, 453 (1990).CrossRefGoogle Scholar
  19. [19]
    B. Bireckoven and J. Wittig, J. Phys. E: Sci. Instr., 21, 841 (1988).CrossRefGoogle Scholar
  20. [20]
    D. Erskine, P.Y. Yu and G. Martinez, Rev. Sci. Instr., 58, 406 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Thomasson
    • 1
  • F. Thomas
    • 1
  • C. Ayache
    • 1
  • I. L. Spain
    • 1
  • M. Villedieu
    • 1
  1. 1.Département de Recherche Fondamentale sur la Matière Condensée, Service de Physique Statistique Magnétisme et SupraconductivitéCentre d’Etudes Nucléaires de GrenobleGrenoble CédexFrance

Personalised recommendations