Advertisement

Pressure Dependence of TC of YCa0.2Ba1.8Cu4O8

  • E. N. van Eenige
  • R. J. Wijngaarden
  • R. Griessen
  • J. Karpinski
  • E. Kaldis
  • S. Rusiecki
  • E. Jilek
Chapter
  • 136 Downloads
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

Resistive measurements in a cryogenic diamond anvil cell show that the critical temperature Tc of YCa0.2Ba1.8Cu4O8 can be increased from 90 K to 99 K by applying a pressure of 8.8 GPa. At higher pressures Tc decreases. An inverted parabola is well fitted through the data. This behavior can be explained by assuming that the number of holes in the CuO2-planes increases linearly upon applying pressure and that Tc as a function of the number of holes nh in the CuO2-planes follows the (parabolic-like) Tc(nh) phase diagram line.

Keywords

Critical Temperature Gold Wire Diamond Anvil Cell Solid State Inorg Inverted Parabola 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bucher, J. Karpinski, E. Kaldis and P. Wächter, J. of Less-Common Metals 164&165:20 (1990).CrossRefGoogle Scholar
  2. 2.
    E.N. van Eenige, R. Griessen, R.J. Wijngaarden, J. Karpinski, E. Kaldis, S. Rusiecki and E. Jilek, Physica C 168:482 (1990).CrossRefGoogle Scholar
  3. 3.
    T. Miyatake, S. Gotoh, N. Koshizuka and S. Tanaka, Nature 341:41 (1989).CrossRefGoogle Scholar
  4. 4.
    I. Mangelschots, M. Mali, J. Roos, H. Zimmermann, D. Brinkmann, S. Rusiecki, J. Karpinski, E. Kaldis and E. Jilek, Physica C 172:57 (1990).CrossRefGoogle Scholar
  5. 5.
    T. Heyen, M. Cardona, E. Kaldis, J. Karpinski and S. Rusiecki, to be published.Google Scholar
  6. 6.
    N. Mori, H. Takahashi and Ch. Murayama, Supercond. Sci. Technology 4:S439 (1991).CrossRefGoogle Scholar
  7. 7.
    S. Rusiecki, E. Kaldis, J. Karpinski and E. Jilek, to be published.Google Scholar
  8. 8.
    J.J. Scholtz, Ph.D.-thesis, Free University, Amsterdam, unpublished and J.J. Scholtz, E.N. van Eenige, R.J. Wijngaarden and R. Griessen, to be published.Google Scholar
  9. 9.
    M.W. Shafer and T. Penney, Eur. J. Solid State Inorg. Chem. 27:191 (1990).Google Scholar
  10. 10.
    M.-H. Whangbo and C.C. Torardi, Science 249:1143 (1990).CrossRefGoogle Scholar
  11. 11.
    R.J. Nelmes, J.S. Loveday, E. Kaldis and J. Karpinski, Physica C 172:311 (1990).CrossRefGoogle Scholar
  12. 12.
    J. Mesot, P. Allenspach, U. Staub, A. Furrer, H. Blank, H. Mutka, C. Vettier, E. Kaldis, J. Karpinski and S. Rusiecki, J. of Less-Common Metals 164&165:59 (1990).CrossRefGoogle Scholar
  13. 13.
    Y. Yamada, J.D. Jorgensen, Shiyou Pei, P. Lightfoot, Y. Kodama, T. Matsumoto and F. Izumi, Physica C 173:185 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. N. van Eenige
    • 1
  • R. J. Wijngaarden
    • 1
  • R. Griessen
    • 1
  • J. Karpinski
    • 2
  • E. Kaldis
    • 2
  • S. Rusiecki
    • 2
  • E. Jilek
    • 2
  1. 1.Department of Physics and AstronomyFree UniversityAmsterdamThe Netherlands
  2. 2.Laboratorium für FestkörperphysikETHZürichSwitzerland

Personalised recommendations