2D Transport in Semiconductors Under Pressure

  • J. L. Robert
Part of the NATO ASI Series book series (NSSB, volume 286)


Different regimes of conduction in 2D electron gas are examined, emphasizing effects of hydrostatic pressure and external magnetic field on GaAs/GaAlAs heterostructures with a spacer.

As a result of electron transfer in the quantum well controlled by the pressure, various effects can be studied on the same sample by varying the surface electron density.
  1. a)

    Hydrostatic pressure can be used to reach sufficiently low surface electron densities at which the ultra-quantum limit occurs at available magnetic fields. The binding energy of a magneto donor, composed of atoms and electrons separated each other by a spacer is measured for different surface electron densities controlled by the pressure. A metal non metal transition is observed

  2. b)

    In the quantum limit, experiments performed under hydrostatic pressure allow us to analyze the behaviour of the conductivity σxx. Its dependence on the filling factor as well as the temperature shows evidence for the nearest neighbour hopping process in the zero resistance state.

  3. c)

    In the weak localization regime, the relevant parameter kFlo is varied over two orders of magnitude by applying a pressure (kF is the Fermi wave vector, lo is the mean free path). As a result the weak localization is investigated on the same sample between the dirty and pure limits.



Impurity State Conduction Band Minimum Thermal Activation Energy Space Thickness Fermi Wave Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Anderson-IBM — J.Res. Develop. 4-283 (1960).Google Scholar
  2. 2.
    R. Dingle, HJL. Stornier, A.C. Gossard, W. Wiegmann, Appl. Phvs.Lett. 33, 665 (1978).Google Scholar
  3. 3.
    HJL. Stornier, R. Dingle, A.C. Gossard, W. Wiegmann, M.D. Sturge, Solid State Communication, 29-705 (1979).Google Scholar
  4. 4.
    L. Esaki, R. Tsu, IBM, Res. Note R.C. 2418 (1969).Google Scholar
  5. 5.
    W. Paul, J. Appl. Phys. supplement to volume 32,2082 (1961).CrossRefGoogle Scholar
  6. 6.
    M. Konczykowski, S. Porowski, J. Chroboczek, Proceeding of the 1 lth Int Conf. Phys. Semicon.. Warsaw 708 (1972).Google Scholar
  7. 7.
    H.E. Lee, L.Y. Juravel, J.C. Wooley and AJ. Springthorpe. Phvs. Rev. B21.659 (1980).Google Scholar
  8. N. Lifshitz, A. Jarayaman, R.A. Logan and H.C. Card, Phvs. Rev. B21.670 (1980).Google Scholar
  9. P.M. Mooney, J. Appl. Phvs. 67(3) (1990).Google Scholar
  10. 8.
    J.M. Mercy, C. Bousquet, J.L. Robert, A. Raymond, G. Gregoris, J. Beerens, J.C. Portal, P.M. Frijlink, P. Delescluse, P. Chevrier, and N.T. Linh, Surf. Science 142,298 (1984).CrossRefGoogle Scholar
  11. 9.
    G. Bastard, Private Communication.Google Scholar
  12. 10.
    J.L. Robert, A. Raymond, L. Konczewicz, C. Bousquet, W. Zawadzki, F. Alexandre, J.M. Masson, J. P. André, P.M. Frijlink, Phvs. Rev. B 36,9297 (1987).Google Scholar
  13. 11.
    K. Von Klitzing, G. Dorda, M. Pepper, Phvs. Rev. Lett. 45,449 (1980).CrossRefGoogle Scholar
  14. 12.
    R.B. Laughiin, Phvs. Rev. B 23, (1981).Google Scholar
  15. 13.
    N.F. Mott, Phil. Mag. 22, 7 (1970).CrossRefGoogle Scholar
  16. 14.
    B.I. Shklovskii and A.L. Efros, “Electronic properties of doped semiconductors”, Springer Verlag, Berlin (1984).CrossRefGoogle Scholar
  17. 15.
    A.B. Fowler, A. Hartstein, Phil. Mag. B42, 949 (1980).CrossRefGoogle Scholar
  18. 16.
    K.Y. Hayden, P.N. Butcher, Phil. Mag. B38, 603 (1979).Google Scholar
  19. 17.
    N. Mikoshiba, Phvs. Rev. 127, 1961 (1962).Google Scholar
  20. 18.
    A. Hartstein, A.B. Fowler, M. Albert, InsiPhvs. Conf. Series Nb43, 1001–1004 (1979).Google Scholar
  21. 19.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phvs. Rev. Lett. 42, 637 (1979).CrossRefGoogle Scholar
  22. 20.
    B.L. Altshuler, A.I. Khlem’nitzkii, A.I. Larkin and P.A. Lee, Phvs. Rev. B22, 5142 (1980).Google Scholar
  23. 21.
    HJ. Fukuyama, J. Phvs. Soc. Jpn. 48, 2169 (1980).CrossRefGoogle Scholar
  24. 22.
    B.L. Altshuler, A.G. Aronov, P.A. Lee, Phvs. Rev. Lett. 44, 1288 (1980).CrossRefGoogle Scholar
  25. 23.
    K. Zekentes, S. Ravanomanjato, R. Piotrzkowski, E. Litwin-Stszewska, J.L. Robert, Surface Science 228, 449–452 (1990).CrossRefGoogle Scholar
  26. 24.
    B J.F. Lin, M.A. Paalanen, A.C. Gossard, D.C. Tsui, Phvs. Rev. B29 Nb.2, 927–934 (1984).Google Scholar
  27. 25.
    P.A. Lee, T.V. Ramakrishnan, Phvs. Rev. B26, 4009 (1982).Google Scholar
  28. 26.
    S. Ravanomanjato, “Thesis “ Montpellier (1990), unpublished.Google Scholar
  29. 27.
    S. Shapiro, E. Abrahams, Phvs. Rev. B24, 4025 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. L. Robert
    • 1
  1. 1.G.E.S. U.S.T.L. URA 357Montpellier-CedexFrance

Personalised recommendations