Advertisement

Optical Investigation of CdxZn1−xTe/ZnTe Superlattices at High Pressure

  • W. WilliamsonIII
  • S. A. Lee
  • Y. Luo
  • Y. Rajakarunanayake
Chapter
  • 136 Downloads
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

We have measured and analyzed the photoluminescence spectra from MBE grown CdxZn1−xTe/ZnTe strained layer superlattices under high pressure. In these superlattices, the electrons and heavy holes are confined in the CdxZn1−xTe layer (type I) while the light holes are confined in the ZnTe layer (type II). The low temperature photoluminescence is typically dominated by a strong feature due to the decay of the light-hole exciton, and weaker features due to the decay of the heavy-hole exciton and due to luminescence from an excited quantum well state. We report the pressure dependence of the photoluminescence up to 6.8 GPa. Our results are consistent with a small valence band offset between CdTe and ZnTe. We have measured the difference of the hydrostatic valence band deformation potentials.

Keywords

Valence Band Heavy Hole Diamond Anvil Cell Light Hole Band Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Yao, in The Technology and Physics of Molecular Beam Epitaxy, E.H.C. Parker, Ed., (Plenum Press, New York, 1985), p. 313.Google Scholar
  2. 2.
    H. Fujiyasu, H. Takahashi, H. Shimizu, A. Sasaki, in Proceedings of the 17th International Conference on the Physics of Semiconductors, (Springer, New York, 1985), p. 539.Google Scholar
  3. 3.
    R.H. Miles, G.Y. Wu, M.B. Johnson, T.C. McGill, J.P. Faurie, and S. Sivananthan, Appl. Phys. Lett. 48, 1383 (1986).CrossRefGoogle Scholar
  4. 4.
    C. Neuman, A. Nothe, and N.O. Lipari, Phys. Rev. B 37, 922 (1988).CrossRefGoogle Scholar
  5. 5.
    A.M. Glass, K. Tai, R.B. Bylsma, R.D. Feldman, D.H. Olson, and R.F. Austin, Appl. Phys. Lett. 53, 834 (1988).CrossRefGoogle Scholar
  6. 6.
    Y. Rajakarunanayake, M.C. Phillips, J.O. McCaldin, D.H. Chow, D.A. Collins, and T.C. McGill, SPIE Proc. 1285, 142 (1990).CrossRefGoogle Scholar
  7. 7.
    T.M. Duc, C. Hsu, and J.P. Faurie, Phys. Rev. Lett. 58, 1127 (1987).CrossRefGoogle Scholar
  8. 8.
    C.G. Van de Walle and R.M. Martin, Phys. Rev. B 35, 8154 (1987).CrossRefGoogle Scholar
  9. 9.
    C.G. Van de Walle, K. Shahzad, and D.J. Olego, J. Vac. Sci. Technol. B6, 1350 (1988).Google Scholar
  10. 10.
    J.O. McCaldin, T.C. McGill, and C.A. Mead, Phys. Rev. Lett. 36, 56 (1976).CrossRefGoogle Scholar
  11. 11.
    R.H. Miles, T.C. McGill, S. Sivananthan, X. Chu, and J.P. Faurie, J. Vac. Sci. Techol. B 5, 1263 (1987).CrossRefGoogle Scholar
  12. 12.
    J.W. Matthews and A.E. Blakeslee, J.Cryst. Growth 27, 118 (1974).Google Scholar
  13. J.W. Matthews and A.E. Blakeslee, J.Cryst. Growth 29, 273 (1975).CrossRefGoogle Scholar
  14. J.W. Matthews and A.E. Blakeslee, J.Cryst. Growth 32, 265 (1976).CrossRefGoogle Scholar
  15. 13.
    J.W. Matthews, in Epitaxial Growth, E. Kasper and F.J. Grunthaner, Surf. Sci. 174, 606 (1986).CrossRefGoogle Scholar
  16. 14.
    J.H. Van der Merwe, J. Appl. Phys. 34, 123 (1963).CrossRefGoogle Scholar
  17. 15.
    H. Mathieu, J. Allègre, A. Chatt, P. Lefebvre, and J.P. Faurie, Phys. Rev. B 38, 7740 (1988).CrossRefGoogle Scholar
  18. 16.
    B. Gil, D.J. Dunstan, J. Calatayud, H. Mathieu, and J.P. Faurie, Phys. Rev. B 40, 5522 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • W. WilliamsonIII
    • 1
  • S. A. Lee
    • 1
  • Y. Luo
    • 1
  • Y. Rajakarunanayake
    • 1
  1. 1.Department of Physics & AstronomyThe University of ToledoToledoUSA

Personalised recommendations