Photoluminescence of Strained-Layer Quantum Well Structures Under High Hydrostatic Pressure

  • V. A. Wilkinson
Part of the NATO ASI Series book series (NSSB, volume 286)


The photoluminescence of quantum-well structures, under high hydrostatic pressure, has been studied. An argon-loaded miniature diamond-anvil cell, which readily generates pressures in the region 0 to 200kbar, has been employed for this purpose. Structures containing strained layers are currently of great interest and are concentrated on here. High pressure techniques for determining the heterojunction band line-ups, with spectroscopic accuracy, are described. Recent results on the InGaAs/AlGaAs and GaAsSb/GaAs strained systems are discussed.

The pressure coefficients of bulk semiconductors and more recently of low dimensional structures have been reported in the literature. There is now considerable evidence that compressively strained layers exhibit pressure coefficients which are lower than expected. The influence of higher-order elastic constants and strain-dependent deformation potentials have been considered but do not adequately describe the data. This behaviour therefore remains anomalous.


Pressure Coefficient High Hydrostatic Pressure Indium Content Band Alignment Strained Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. O’Reilly, Valence band engineering in strained-layer structures, Semicond. Sci. Technol. 4:121 (1989).CrossRefGoogle Scholar
  2. 2.
    A. R. Adams, Hydrostatic pressure investigation of quantum well optoelectronic devices, in: “Frontiers of High Pressure Research” H. D. Hochheimer and R. D. Etters, eds., Plenum (1991).Google Scholar
  3. 3.
    A. R. Adams, Band-structure engineering for low-threshold high-efficiency semiconductor lasers, Elec. Lett. 22:249 (1986).CrossRefGoogle Scholar
  4. 4.
    W. Paul and D. M. Warschauer, The role of pressure in semiconductor research, in: “Solids Under Pressure”, W. Paul and D. M. Warschauer, eds., McGraw-Hill, New York (1963).Google Scholar
  5. 5.
    R. J. Warburton, R. J. Nicholas, N. J. Mason, P. J. Walker, A. D. Prins and D. J. Dunstan, High-pressure investigation of GaSb and Ga1−xInxSb/GaSb quantum wells, Phvs. Rev. B43:4994 (1991).Google Scholar
  6. 6.
    D. J. Wolford, T. F. Keuch, J. A. Bradley, M. A. Gell, D. Ninno and M. Jaros, Pressure dependence of GaAs/AlxGa1−xAs quantum well bound states: The determination of valence band offsets, J. Vac. Sci. Technol. B4:1043 (1986).Google Scholar
  7. 7.
    U. Venkateswaren, M. Chandrasekhar, H. R. Chandrasekhar, B. A. Vojak, F. A. Chambers and J. M. Meese, High pressure studies of GaAs/Ga1−xAlxAs quantum wells of widths 26Å to 150Å, Phvs. Rev. B33:8416 (1986).Google Scholar
  8. 8.
    See, for example, R. Dingle, W. Wiegmann and C. H. Henry, Quantum states of confined carriers in very thin AlxGa1−xAs heterostructures, Phys. Rev. Lett. 33:827 (1974).CrossRefGoogle Scholar
  9. 9.
    P. Dawson, K. J. Moore and C. T. Foxon, Photoluminescence studies of type II GaAs/AlAs quantum wells grown by MBE, SPIE Quantum Well and Superlattice Physics 792:208(1987).CrossRefGoogle Scholar
  10. 10.
    D. J. Dunstan and W. Scherrer, Miniature cryogenic diamond-anvil high-pressure cell, Rev. Sci. Instrum. 59:627 (1988).CrossRefGoogle Scholar
  11. 11.
    D. J. Dunstan and V. A. Wilkinson, Miniature cryogenic diamond anvil cell, High Pressure Research 5:794 (1990).CrossRefGoogle Scholar
  12. 12.
    J. D. Barnett, S. Block and G. J. Piermarini, An optical fluorescence system for quantitative pressure measurements in the diamond-anvil cell, Rev. Sci. Instrum. 44:1 (1973).CrossRefGoogle Scholar
  13. 13.
    A. D. Prins and D. J. Dunstan, A determination of the relative bulk moduli of GalnAsP and InP, Phil. Mag. Lett. 58:37 (1988).CrossRefGoogle Scholar
  14. 14.
    T. Fukunaga, T. Takamoti and H. Nakashima, Photoluminescence from AlGaAs-GaAs single quantum wells grown on variously oriented GaAs substrates by MBE, J. Crvs. Growth 81:85 (1987).CrossRefGoogle Scholar
  15. 15.
    G. Bastard, Superlattice band structure in the envelope function approximation, Phvs. Rev. B24:5693 (1981).Google Scholar
  16. 16.
    P. Lefebvre, B. Gil and H. Mathieu, Effect of hydrostatic pressure on GaAs-AlxGa1−xAs microstructures, Phys. Rev. B35:5630 (1987).Google Scholar
  17. 17.
    K. J. Moore, P. Dawson and C. T. Foxon, Observation of luminescence from the 2S heavy-hole exciton in GaAs-(AlGa)As quantum-well structures at low temperature, Phvs. Rev. B34:6022 (1986).Google Scholar
  18. 18.
    D. J. Wolford and J. A. Bradley, Pressure dependence of shallow bound states in gallium arsenide, Solid State Commun. 53:1069 (1985).CrossRefGoogle Scholar
  19. 19.
    H. Muller, R. Trommer, M. Cardona and P. Vogl, Pressure dependence of the direct absorption edge of InP, Phys. Rev. B21:4879 (1980).Google Scholar
  20. 20.
    A. R. Goni, K. Strossner, K. Syassen and M. Cardona, Pressure dependence of direct and indirect optical absorption in GaAs, Phys. Rev. B36:1582 (1987).Google Scholar
  21. 21.
    H. Q. Hou, L. J. Wang, R. M. Tang and J. M. Zhou, Pressure dependence of photoluminescence in InxGa1−xAs/GaAs strained quantum wells, Phys. Rev. B42:2926 (1990).Google Scholar
  22. 22.
    V. A. Wilkinson, A. D. Prins, D. J. Dunstan, L. K. Howard, M. T. Emeny, Investigation of the band structure of the strained systems InGaAs/GaAs and InGaAs/AlGaAs by high-pressure photoluminescence, J. Elec. Mat. 20:509 (1991).CrossRefGoogle Scholar
  23. 23.
    G. Ji, S. Agarwala, D. Huang, J. Chyi and H. Morkoc, Band lineup in GaAs1−xSbx/GaAs strained-layer multiple quantum wells grown by molecular beam epitaxy, Phys. Rev. B38:10571 (1988).Google Scholar
  24. 24.
    A. D. Prins, J. D. Lambkin, E. P. O’Reilly, A. R. Adams, R. Pritchard, W. S. Truscott and K. E. Singer, Band Offsets in GaAsSb/GaAs strained-layer structures from high-pressure photoluminescence, Proc. IVth Conf. on ‘High Pressure in_ Semiconductor Physics’. Porto Caras, 933 (1990).Google Scholar
  25. 25.
    C. G. Van de Walle, Band lineups and deformation potentials in the Model-Solid theory, Phys. Rev. B39:1871 (1989).Google Scholar
  26. 26.
    R. E. Nahory, M. A. Pollak, J. C. Dewinter and K. M. Williams, Growth and properties of liquid-phase epitaxial GaAs1−xSx J. APDI. Phys. 48:1607 (1977).CrossRefGoogle Scholar
  27. 27.
    J. D. Lambkin, D. J. Dunstan, E. P. O’Reilly and B. R. Butler, The pressure dependence of the band offsets in a GaInAs/InP multiple quantum well structure, J. Crvs. Growth 93:323 (1988).CrossRefGoogle Scholar
  28. 28.
    M. Chandrasekhar, U. Venkateswaren, H. R. Chandrasekhar, B. A. Vojak, F. A. Chambers and J. M. Meese, Proc. XV11th Int. Conf. on the physics of semiconductors. Stockholm (1986).Google Scholar
  29. 29.
    A. D. Prins, J. D. Lambkin, K. P. Homewood, M. T. Emeny and C. R. Whitehouse, Photoluminescence of InGaAs/GaAs strained-layer structures under high pressure, High Pressure Research 3:48 (1990).CrossRefGoogle Scholar
  30. 30.
    V. A. Wilkinson, A. D. Prins, J. D. Lambkin, E. P. O’Reilly, L. K. Howard and M.T. Emeny, Hydrostatic pressure coefficients of the photoluminescence of InxGa1–xAs/GaAs strained-layer quantum wells, Phvs. Rev. B42:3113 (1990).Google Scholar
  31. 31.
    Y. F. Tsay, S. S. Mitra and B. Bendow, Pressure dependence of energy gaps and refractive indices of tetrahedrally bonded semiconductors, Phvs. Rev. B10: 1476 (1974).Google Scholar
  32. 32.
    R. A. Noak and W. B. Holzapfel, Photoluminescence of GaSb under hydrostatic pressure, Solid State Commun. 28:177 (1978).CrossRefGoogle Scholar
  33. 33.
    A. D. Prins, Private communication, (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • V. A. Wilkinson
    • 1
  1. 1.Strained-Layer Structures Research GroupUniversity of SurreyGuildford, SurreyUK

Personalised recommendations