Skip to main content

Hydrostatic Pressure Investigations of Quantum-Well Optoelectronic Devices

  • Chapter
Frontiers of High-Pressure Research

Part of the book series: NATO ASI Series ((NSSB,volume 286))

Abstract

Quantum wells and superlattices offer exciting new possibilities for engineering the electronic band structure of semiconductor optoelectronic devices. Hydrostatic pressure also causes changes in the band structure which in many respects mimic the effects of quantum confinement and hence allows a systematic study to be made by varying the pressure on a single device. This avoids unwanted chemical changes that can occur when the band structure is varied in a growth sequence and thus allows parameters dependent only on the band structure to be clearly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AR Adams, M Asada, Y Suematsu and S Arai, The temperature dependence of the efficiency and threshold current in InGaAsP lasers related to intervalence band absorption, Jpn J Appl Phvs 19:L621 (1980).

    Article  CAS  Google Scholar 

  2. N K Dutta and R J Nelson, The case for Auger recombination in InGaAsP, J Appl Phvs 53:74 (1982).

    Article  CAS  Google Scholar 

  3. AR Adams, K C Heasman and E P O’Reilly, “Band structure engineering in Semiconductor Microstructures”, Plenum Press, 279-301 (1989).

    Google Scholar 

  4. W Ring and A R Adams, Pressure dependence of the threshold current and quantum efficiency of 1.55 μm MQW lasers, to be published.

    Google Scholar 

  5. W Ring, A R Adams and P J A Thijs, Pressure dependence of the threshold current and quantum efficiency of 1.55 μm strained-layer lasers, to be published.

    Google Scholar 

  6. AR Adams, Bandstructure engineering for low-threshold high efficiency semiconductor lasers, Electron Lett 22:249 (1986).

    Article  Google Scholar 

  7. E P O’Reilly, Valence band engineering in strained-layr structures, Semicond Sei Technol 4:121 (1989).

    Article  Google Scholar 

  8. A Ghiti, E P O’Reilly and A R Adams, Improved dynamics and linewidth enhancement factor in strained-layer lasers, Electron Lett 25:821 (1989).

    Article  Google Scholar 

  9. P J A Thijs, L F Tiemeijer, P I Kuindersma, J J M Binsma and T Van Dongen, High performance 1.5 jim wavelength InGaAs/InGaAsP strained quantum well lasers and amplifiers, IEEE J Quantum Electronics, June (1991).

    Google Scholar 

  10. I K Czajkowski, J Allam, M Silver, A R Adams, M A Gell, Impact ionisation thresholds in silicon and germanium under hydrostatic pressure and strain, IEE Proc Pt J, 137:79 (1990).

    Google Scholar 

  11. J Allam, IK Czajkowski, A R Adams, M Silver, Pressure dependence of ionisation thresholds in Si, to be published.

    Google Scholar 

  12. J Allam, A R Adams, M A Pate, J S Roberts, Evidence for impact ionisation via X and F valleys in GaAs from hydrostatic pressure studies of avalanche breakdown, Proc GaAs and Related Compounds, 375 Jersey (1990).

    Google Scholar 

  13. B K Ridley, Lucky drift mechanism for impact ionisation in semiconductors, J Phvs. C: Solid State Physics 16:3373 (1983).

    Article  CAS  Google Scholar 

  14. C L Anderson, C R Crowell, Threshold energies for electron-hole pair production by impact ionization in semiconductors, Phvs Rev B 5:2267 (1972).

    Article  Google Scholar 

  15. R People, Physics and applications of GeSi/Si strained layer heterostructures, IEEE J Quantum Electron QE-22:1696 (1986).

    Article  CAS  Google Scholar 

  16. I K Czajkowski, J Allam, A R Adams, Impact ionisation threshold in relaxed and strained Ge/Si alloys, to be published.

    Google Scholar 

  17. R Chin, N Holonyak Jnr, G E Stillman, J Y Tang, K Hess, Impact ionisation in multilayered heterojunction structures, Electron Lett 16:467 (1980).

    Article  CAS  Google Scholar 

  18. K Brennan, Theory of electron and hole impact ionisation in quantum well and staircase superlattice avalanche photodiode structures, IEE Trans Electron Dev ED-32:2197 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adams, A.R. (1991). Hydrostatic Pressure Investigations of Quantum-Well Optoelectronic Devices. In: Hochheimer, H.D., Etters, R.D. (eds) Frontiers of High-Pressure Research. NATO ASI Series, vol 286. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2480-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2480-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2482-7

  • Online ISBN: 978-1-4899-2480-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics