Influence of Pseudomorphic Constraints on the Pressure-Response of Semiconductor Heterostructures

  • L. J. Cui
  • U. D. Venkateswaran
  • B. A. Weinstein
  • B. T. Jonker
  • F. A. Chambers
Part of the NATO ASI Series book series (NSSB, volume 286)


Hydrostatic pressure (P) is an important tool for the study of semiconductor heterostructures. It can tune their electronic energy bands, and as a consequence, has been used to study the band offset at heterointerfaces,[1] the possibility of tunable quantum well lasers,[2] and the indirect-gap related DX-defects.[3] The phase stability of heterostructures can be studied under high pressure more conveniently than by modifying chemical composition, and novel superpressing phenomena have been observed.[4] Phase stability is discussed elsewhere in this proceedings.[5] External hydrostatic pressure can also affect the mechanical stability of heterostructures by tuning lattice mismatch.[6] This tuning is of interest and importance for strained-layer heterostructures now finding wide device applications, since lattice-mismatch strain can strongly influence electronic properties.[7]


Hydrostatic Pressure Bulk Modulus Strain Component Misfit Strain Biaxial Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Venkateswaran, M. Chandrasekhar, H.R. Chandrasekhar, B.A. Vojak, F.A. Chambers, and J.M. Meese, Phys. Rev. B33, 8416 (1986).Google Scholar
  2. [2]
    S.W. Kirchoefer, N. Holonyak, Jr., K. Hess, K. Meehan, D.A. Gulino, H.G. Drickamer, J.J. Coleman, and P.D. Dapkus, J. Appl. Phys. 53, 6037 (6037).CrossRefGoogle Scholar
  3. [3]
    M.F. Li, P.Y. Yu, E.R. Weber, and W. Hansen, Phys. Rev. B36, 4531 (1987).Google Scholar
  4. [4]
    B.A. Weinstein, S.K. Hark, R.D. Burnham, and R.M. Martin, Phys. Rev. Lett. 58 781 (1986).CrossRefGoogle Scholar
  5. L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and F. A. Chambers, to be published.Google Scholar
  6. [5]
    B.A. Weinstein, L.J. Cui, U.D. Venkateswaran, and F.A. Chambers, “Enhanced Stability of Heterostructures Under Pressure”, in the present proceedings.Google Scholar
  7. [6]
    L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and B.T. Jonker, to be published.Google Scholar
  8. [7]
    See for example, A.R. Adams, “Hydrostatic Pressure Investigations of Quantum Well Optoelectronic Devices”, in the present proceedings.Google Scholar
  9. [8]
    L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and F. A. Chambers, Semicond. Sci. and Technol. 6, 469 (1991).CrossRefGoogle Scholar
  10. [9]
    S. Ganesan, A.A. Maradudin, and J. Oitmaa, J. Ann. Phys. (N.Y.) 56, 556 (1970).CrossRefGoogle Scholar
  11. E.M. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).CrossRefGoogle Scholar
  12. [10]
    B. Jusserand and M. Cardona, in Light Scattering in Solids V, Vol. 66 of Topics in Applied Physics, edited by M. Cardona and G. Güntherodt (Springer, New York, 1989) pp. 124–128, and 145.Google Scholar
  13. [11]
    See for example, J.F. Nye, Physical properties of Crystals, (Oxford University Press, 1987).Google Scholar
  14. [12]
    See for example, E. P. O’Reily, Semicond. Sci. Technol. 4 121 (1989) and references therein.CrossRefGoogle Scholar
  15. [13]
    The Cij values for all materials, except InAs, are taken from: S.S. Mitra and N.E. Massa, in Handbook on Semiconductors, vol. 1, edited by T.S. Moss (North Holland, New York, 1982) p.96.Google Scholar
  16. The values for InAs are from: R. Reifenberger, M.J. Kerk, and J. Trivisonno, J. Appl. Phys. 40 5403 (1969).CrossRefGoogle Scholar
  17. [14]
    L.J. Cui, Ph.D. Thesis, Physics Dept. SUNY at Buffalo, unpublished.Google Scholar
  18. [15]
    H. Mitsuhashi, I. Mitsuishi, M. Mizuta, and A. Kukimoto, Jap. J. Appl. Phys. 24, L578 (1985).CrossRefGoogle Scholar
  19. J. Kleiman, R.M. Park, and S.B. Qadri, J. Appl. Phys. 61, 2067 (2067).CrossRefGoogle Scholar
  20. [16]
    B.T. Jonker, J.J. Krebs, S.B. Qadri, and G.A. Prinz, Appl. Phys. Lett. 50, 848 (1987).CrossRefGoogle Scholar
  21. W.C. Chou, X. Liu, and A. Petrou, private communication.Google Scholar
  22. [17]
    J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).Google Scholar
  23. J.W. Matthews, J. Vac. Sci. Tech. 12, 126 (1975).CrossRefGoogle Scholar
  24. [18]
    R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985).CrossRefGoogle Scholar
  25. [19]
    In the force-balance model of Ref. 17, fc varies essentially as (1/h)ln(h/b), where h is the layer thickness and b the Burger’s displacement; in the local energy-balance picture of Ref. 18, the square of fc is proportional to this expression. The non-equilibrium model of Ref. 18 is probably more appropriate here because, unlike the growth process at 320°C, the room temperature condition of our experiments should hinder the formation and motion of dislocations.Google Scholar
  26. [20]
    R. People and S.A. Jackson in Strained Layer Superlattices: Physics, edited by T.P. Pearsall, Semiconductors and Semimetals, Vol., 32 (Academic Press, New York, 1990) Chap. 4.Google Scholar
  27. [21]
    B.A. Weinstein and M. Cardona, Phys. Rev. B5, 3120 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • L. J. Cui
    • 1
  • U. D. Venkateswaran
    • 1
  • B. A. Weinstein
    • 1
  • B. T. Jonker
    • 2
  • F. A. Chambers
    • 3
  1. 1.Physics Dept.SUNYBuffaloUSA
  2. 2.Naval Research LaboratoryUSA
  3. 3.Amoco Technology Co.NapervilleUSA

Personalised recommendations