Advertisement

Enhanced Stability of Heterostructures Under Pressure

  • B. A. Weinstein
  • L. J. Cui
  • U. D. Venkateswaran
  • F. A. Chambers
Chapter
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

Epitaxial heterostructures configured as single or repeated layers, and, more recently, as islands, have become ubiquitous within semiconductor physics because of the diverse phenomena and applications made possible through their tailored growth.[1] The practical limits of heterostructure tailoring are defined by a variety of instabilities related to bulk, interface, and local bonding properties, and the study of these instabilities offers fundamental insight into the competition between mechanical and chemical forces at each structural level. Despite the importance of such issues, most experimental and theoretical work on heterostructure stability has been limited to external environments compatible with growth, and, hence, has not considered the effects of extreme hydrostatic pressure.[2–4] Although this is understandable in terms of current interest trends, it overlooks the nature of pressure as a thermodynamic parameter capable of shifting heterostructures into regions of phase space which ordinarily are either inaccessible, or only attained in chemically different materials systems.

Keywords

Transition Pressure GaAs Layer High Pressure Phase Diamond Anvil Cell Transition Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    See for example, Semiconductors and Semimetals, Vols. 24, 25, and 32 (Academic Press, New York); L.L. Chang, J. Vac. Sci. Technol. B1, 120 (1983).Google Scholar
  2. P. Grambow, E. Vasiliadou, T. Demel, K. Kern, D. Heitmann, and K. Ploog, Microelectronic Eng., 11, 47 (1990).CrossRefGoogle Scholar
  3. [2]
    J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).Google Scholar
  4. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 29, 273 (1975).CrossRefGoogle Scholar
  5. Epitaxial Growth, edited by J.W. Matthews (Academic Press, New York, 1975).Google Scholar
  6. [3]
    J.H. Van der Merwe, J. Woltersdorf, and W.A. Jesser, Mats. Sci. Eng. 81, 1 (1986).CrossRefGoogle Scholar
  7. [4]
    A.A. Mbaye, D.M. Wood, and A. Zunger, Phys. Rev. B37, 3008 (1988).Google Scholar
  8. D.M. Wood and A. Zunger, Phys. Rev. Lett. 61, 1501 (1988).CrossRefGoogle Scholar
  9. S. Froyen, S.-H. Wei, and A. Zunger, Phys. Rev. B38, 10124 (1988).Google Scholar
  10. [5]
    L.J. Cui, U. D. Venkateswaran, B. A. Weinstein, and F.A. Chambers, in The Physics of Semiconductors, Vol. 2, (Proceedings of the 20th International Conference on the Physics of Semiconductors) edited by E. Anastassakis and J.D. Joannapoulos (World Scientific, Singapore, 1991), p. 953Google Scholar
  11. L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and F.A. Chambers, Semicond. Sci. Technol. 6, 469 (1991).CrossRefGoogle Scholar
  12. L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and F.A. Chambers, to be published.Google Scholar
  13. [6]
    B.A. Weinstein, S.K. Hark, R.D. Burnham, and R.M. Martin, Phys. Rev. Lett. 58, 781 (1987).CrossRefGoogle Scholar
  14. B.A. Weinstein, S.K. Hark, and R.D. Burnham, in The Physics of Semiconductors, Vol. 1 (Proceedings of the 18th International Conference on the Physics of Semiconductors) edited by O. Engström (World Scientific, Singapore, 1987), p. 707.Google Scholar
  15. [7]
    L.A. Kolodziejski, R.L. Gunshor, N. Otsuka, B.P. Gu, Y. Hefetz, and A.V. Nurmiko, Appl. Phys. Lett. 48, 1482 (1986).CrossRefGoogle Scholar
  16. W. Giriat and J.K. Furdyna in Semiconductors and Semimetals Vol. 25 edited by J.K. Furdyna and J. Kossut (Academic Press, New York, 1988), Chap. 1.Google Scholar
  17. [8]
    A. Navrotsky and J.C. Phillips, Phys Rev. B11, 1583 (1975).Google Scholar
  18. [9]
    L.J. Cui, U.D. Venkateswaran, B.A. Weinstein, and B.T. Jonker, to be published.Google Scholar
  19. [10]
    U.D. Venkateswaran, L.J. Cui, B.A. Weinstein, and F.A. Chambers, Phys. Rev. B43, 1875 (1991).Google Scholar
  20. [11]
    K.K. Tiong, P.M. Amirtharaj, F.A. Pollak, and D.E. Aspnes, Appl. Phys. Lett. 44, 122 (1984).CrossRefGoogle Scholar
  21. M. Holtz, R. Zallen, O. Brafman, and S. Matteson, Phys. Rev. B37, 4609 (1988).Google Scholar
  22. R. Zallen, M. Holtz, A.E. Geissberger, R.A. Sadler, W. Paul, and M-L. Théye, J. Noncrystalline Solids 114, 795 (1989).CrossRefGoogle Scholar
  23. [12]
    M. Holtz, K. Syassen, and K. Ploog, Phys. Rev. B40, 2988 (1989).Google Scholar
  24. [13]
    R.E. Hanneman, M.D. Banus, and H.C. Gatos, J. Phys. Chem. Solids 25, 293 (1964).CrossRefGoogle Scholar
  25. [14] B.A. Weinstein, Semicon. Sci. Technol. 4, 283 (1989).CrossRefGoogle Scholar
  26. [15]
    R.G. Dandrea, J.E. Bernard, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. 64, 36 (1990).CrossRefGoogle Scholar
  27. S.-H. Wei and A. Zunger, Phys. Rev. Lett. 61, 1505 (1988).CrossRefGoogle Scholar
  28. D.M. Wood, S.-H. Wei, and A. Zunger, Phys. Rev. B37, 1342 (1988).Google Scholar
  29. [16]
    R.M. Martin in The Physics of Semiconductors, Vol. 1 (Proceedings of the 18th International Conference on the Physics of Semiconductors) edited by O. Engström (World Scientific, Singapore, 1987), p. 639.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. A. Weinstein
    • 1
  • L. J. Cui
    • 1
  • U. D. Venkateswaran
    • 1
  • F. A. Chambers
    • 1
    • 2
  1. 1.Department of PhysicsSUNYBuffaloUSA
  2. 2.Amoco Technology Co.NapervilleUSA

Personalised recommendations