Advertisement

The Application of the Mössbauer Effect for Probing Electronic Properties of the Pressure-Induced Mott Transition

  • Moshe P. Pasternak
  • R. Dean Taylor
  • Raymond Jeanloz
Chapter
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

The problem of the Mott insulator1 and its transition into a metallic state (the Mott transition) is considered to be one of the most serious challenges to the prevailing concepts of solid state physics. At present it remains an unsolved problem. The subject of Mott insulators began in 1937 when De Boer and Verwey2 presented their experimental results on the electrical conductivity of transition-metal (TM) oxides (the oxides of Ni, Co, Mn and Fe). The fact that the majority of these oxides were insulators did not fit the conventional Bloch-Wilson band picture. Assuming the compounds were highly ionic would imply partially filled 3d bands and therefore be metallic! In discussion that followed Peierls suggested that the Coulomb repulsion was responsible for the 3d-electron localization. The TM-oxides such as NiO, CoO and MnO are classic examples of Mott insulators (MI). The phenomenological aspects of a MI can be described as follows: It is an antiferromagnetic insulator whose local moments persist unchanged above TN.

Keywords

Pressure Dependence Metallic State Mott Transition Mossbauer Spectrum Nonmagnetic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Brandow, Int. J. of Quant. Chem., Symp. No. 10:417 (1976).CrossRefGoogle Scholar
  2. 2.
    J.H. de Boer and E. J.W. Verwey, Proc. Roy. Soc. (London) 49:59 (1937).CrossRefGoogle Scholar
  3. 3.
    J.A. Wilson, in: The Metallic and Nonmetallie States of Matter, P.P. Edwards and C.N.R. Rao, eds., Taylor and Francis, London (1985), p215.Google Scholar
  4. 4.
    N.F. Mott, Adv. Phys. 21:785 (1972).CrossRefGoogle Scholar
  5. 5.
    The cuprate high temperature superconductors are examples of metals that have gone through a MT by alloying of the MI CuO.Google Scholar
  6. 6.
    M.P. Pasternak, R.D. Taylor, A. Chen, C. Meade, L.M. Falicov, A. Giesekus, R. Jeanloz and P.Y. Yu, Phys. Rev. Lett. 65:790 (1990).CrossRefGoogle Scholar
  7. 7.
    R.W.G. Wyckoff, Crystal Structures, Vol. I, Interscience, New York (1963).Google Scholar
  8. 8.
    L.G. Van Uitert, H. J. Williams, R.D. Sherwood and J. J. Rubin, J. Appl. Phys. 36:1029 (1965).CrossRefGoogle Scholar
  9. 9.
    S.R. Kuindersma, J.P. Sanchez and C. Haas, Physica 111B:231, (1981).Google Scholar
  10. 10.
    M. Pasternak, S. Bupkshpan and T. Sonnino, Solid State Comm. 16:871 (1975).CrossRefGoogle Scholar
  11. 11.
    J.M. Friedt, J.P. Sanchez and G.K. Shenoy, J. Chem. Phys. 65:5093 (1976).CrossRefGoogle Scholar
  12. 12.
    M.P. Pasternak and R.D. Taylor, Hyperfine Interact. 47:415 (1989).CrossRefGoogle Scholar
  13. R.D. Taylor and M.P. Pasternak, Hyperfine Interact. 53:159 (1990).CrossRefGoogle Scholar
  14. 13.
    A. Jayaraman, Rev. Mod. Phys. 55:65 (1983).CrossRefGoogle Scholar
  15. 14.
    This Hamiltonian is for a combined quadrupole-magnetic interaction, appropriate for an axially symmetric efg and for μHhy>>e2qQ/41(2I−1).Google Scholar
  16. 15.
    E. Sterer and M.P. Pasternak, private communication.Google Scholar
  17. 16.
    G.A. Sawatzky and F. Van der Woude, J. Physique. (Paris), Colloque C6, 35:47 (1974).Google Scholar
  18. 17.
    F, Keffer, T. Oguchi, W. O’Sullivan and Y. Yamashita, Phys. Rev. 115:1553 (1959).CrossRefGoogle Scholar
  19. 18.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, p.761 (1970).Google Scholar
  20. 19.
    J. Owen and J.H.M. Thorley, Rep. Prog. Phys. 29:675 (1966).CrossRefGoogle Scholar
  21. 20.
    W. Low and M. Weger, Phys. Rev. 118:1119 (1960).CrossRefGoogle Scholar
  22. 21.
    J. Hubbard, Proc. Roy. Soc. (London), A276:238 (1963).Google Scholar
  23. J. Hubbard, Proc. Roy. Soc. (London), A281:401 (1964).Google Scholar
  24. 22.
    S.L. Ruby and G.K. Shenoy, in Mössbauer Isomer Shifts, G.K. Shenoy and F.E. Wagner, ed., North Holland, Amsterdam (1978), pp 617.Google Scholar
  25. 23.
    M. Van der Heyden, M.P. Pasternak and G. Langouche, J. Phys. Chem. Solids, 46:1221 (1985).CrossRefGoogle Scholar
  26. 24.
    J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55:418 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Moshe P. Pasternak
    • 1
    • 2
  • R. Dean Taylor
    • 2
  • Raymond Jeanloz
    • 3
  1. 1.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  2. 2.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Geology and GeophysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations