Proton NMR Chemical Shifts in Organic Liquids Measured at High Pressure Using the Diamond Anvil Cell

  • K. E. Halvorson
  • D. P. Raffaelle
  • G. H. Wolf
  • R. F. Marzke
Part of the NATO ASI Series book series (NSSB, volume 286)


Chemically-shifted proton NMR lines of organic liquids, including glycerol, methanol, benzyl alcohol, and 1,2-propanediol, have been resolved for the first time in the diamond anvil cell (DAC) at pressures up to and beyond 10 kbar. The change of the chemical shift difference between two closely-spaced groups of lines, one arising from the hydroxyl protons and other arising from protons in the backbone, was measured as a function of pressure in both glycerol and 1,2-propanediol. Deshielding of the hydroxyl protons relative to the backbone increased approximately linearly with pressure at the rate of 0.06 ppm per kilobar for glycerol, and 0.04 ppm per kilobar for 1,2-propanediol. These experiments prove that line broadening arising from a spatially inhomogeneous magnetic environment surrounding the sample in the DAC need not preclude NMR studies at moderately high resolution (1 ppm). This opens new regions of very high pressure for the study of liquids by NMR.


Chemical Shift Benzyl Alcohol Organic Liquid Diamond Anvil Cell Hydroxyl Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A., 1961, “The Principles of Nuclear Magnetism”, Oxford University Press, Oxford.Google Scholar
  2. Arnold, J. T., and Packard, M. E., 1951, J. Chem. Phvs.. 19:1608.CrossRefGoogle Scholar
  3. Barnett, J. D., Block, S., and Piermarini, G. J., 1973, Rev. Sci. Intr. 44:1.CrossRefGoogle Scholar
  4. Bovey, F. A., 1988, “Nuclear Magnetic Resonance Spectroscopy”, Academic Press Inc., San Diego.Google Scholar
  5. Cohen, A. D., and Reid, C, 1956, J. Chem. Phys.. 25:790.CrossRefGoogle Scholar
  6. Conradi, M. S., 1990, Private Communication.Google Scholar
  7. Diehl, R. M., Fujara, F., and Sillescu, H., 1990, Europhvs. Lett.. 13:257.CrossRefGoogle Scholar
  8. Fiorito, R. B., and Meister, R., 1972, J. Chem. Phys.. 56:4605.CrossRefGoogle Scholar
  9. Jonas, J., 1990, High Pressure Research. 4:573.CrossRefGoogle Scholar
  10. Kuhns, P. L., and Conradi, M. S., 1982, J. Chem. Phvs.. 77:1771.CrossRefGoogle Scholar
  11. Lee, S. H., Luszczynski, K., Norberg, R. E., and Conradi, M. S., 1987, Rev. Sci. Instr. 58:415.CrossRefGoogle Scholar
  12. Liddel, U., and Ramsey, N. F., 1951, J. Chem. Phvs.. 19:1608.CrossRefGoogle Scholar
  13. Raffaelle, D. P., Halvorson, K. E., Marzke, R. F., and Wolf G., 1991, to be submitted.Google Scholar
  14. Vaughn, R. W., Lai, C. F., and Ellemen, D. D., 1971, Rev. Sci. Instr. 42:626.CrossRefGoogle Scholar
  15. Wolfe, M., and Jonas, J., 1979, J. Chem. Phvs. 71:(8):3252.CrossRefGoogle Scholar
  16. Yamada, H., 1972, Chem. Lett. 747.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • K. E. Halvorson
    • 1
  • D. P. Raffaelle
    • 2
  • G. H. Wolf
    • 1
  • R. F. Marzke
    • 2
  1. 1.Department of ChemistryArizona State UniversityTempeUSA
  2. 2.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations