Stimulated Brillouin Gain Spectroscopy at High Pressures

  • J. S. Friedman
  • B. L. Bracewell
  • H. D. Hochheimer
  • C. Y. She
Part of the NATO ASI Series book series (NSSB, volume 286)


The use of spontaneous Brillouin spectroscopy with a Fabry-Perot interferometer is a well established, powerful technique for studying thermally excited sound waves in liquids and solids1–4. There are well known problems associated with the Fabry-Perot interferometer, however. Its limited finesse (resolution), low contrast, nonlinearities of the scanning system, and the absence of an internal standard for frequency calibration all contribute to a shortfall in the precision and accuracy of the experimental data.


Probe Beam Pump Laser Probe Laser Stimulate Brillouin Scat Free Spectral Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Berne and R. Pecora, Dynamic Light Scattering, Wiley, New York (1976).Google Scholar
  2. 2.
    G. Benedek, J. B. Lastovka, K. Fritsch, T. Greytak, J. Opt. Soc. Am. 54, 1284 (1964).CrossRefGoogle Scholar
  3. 3.
    R. Y. Chiao, B. P. Stoicheff, J. Opt. Soc. Am. 54, 1286 (1964).CrossRefGoogle Scholar
  4. 4.
    G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).CrossRefGoogle Scholar
  5. 5.
    J. R. Sandercock, Opt. Commun. 2, 76 (1970).CrossRefGoogle Scholar
  6. 6.
    J. R. Sandercock in: Proc. 2nd Int. Conf. on Light Scattering in Solids, ed. M. Balkanski, Flammarion, Paris (1971), p. 9.Google Scholar
  7. 7.
    J. R. Sandercock, R.C.A. Rev. 36, 89 (1975).Google Scholar
  8. 8.
    J. R. Sandercock, Solid State Commun. 26, 5218 (1976).Google Scholar
  9. 9.
    H. Sussner, R. Vacher, Appl. Optics 18, 3815 (1979).Google Scholar
  10. 10.
    R. Vacher, L. Boyer, M. Boissier, Phys. Rev. B6, 674 (1972).Google Scholar
  11. 11.
    W. S. Gornall, B. P. Stoicheff, Solid State Commun. 8, 1529 (1970).CrossRefGoogle Scholar
  12. 12.
    M. Bush, J. C. Toledano, J. Torres, Opt. Commun. 10, 273 (1974).CrossRefGoogle Scholar
  13. 13.
    R. Vacher, H. Sussner, M. von Schickfus, Rev. Sci. Instrum. 51, 288 (1980).CrossRefGoogle Scholar
  14. 14.
    J. H. Stith, L. M. Peterson, D. H. Rank, T. A. Wiggins, J. Acoust. Soc. Am. 55, 785 (1974).CrossRefGoogle Scholar
  15. 15.
    M. Sedlacek, Z. Naturforsch. 29a, 1622 (1974).Google Scholar
  16. 16.
    M. Sedlacek, A. Asenbaum, Phys. Lett. 50A, 245 (1974).Google Scholar
  17. 17.
    F. D. Medina, D. C. O’Shea, J. Chem. Phys. 66, 1940 (1977).CrossRefGoogle Scholar
  18. 18.
    A. Asenbaum, H. D. Hochheimer, J. Chem. Phys. 74, 1 (1981).CrossRefGoogle Scholar
  19. 19.
    A. Asenbaum, H. D. Hochheimer, Z. Naturforsch. 38a, 980 (1983).Google Scholar
  20. 20.
    C. H. Whitfield, E. M. Brody, Rev. Sci. Instrum. 47, 942 (1976).CrossRefGoogle Scholar
  21. 21.
    H. D. Hochheimer, W. F. Love, C. T. Walker, Phys. Rev. Lett. 38, 832 (1977).CrossRefGoogle Scholar
  22. 22.
    H. D. Hochheimer, W. F. Love, C. T. Walker in: High Pressure and Low Temperature Physics, ed. C. W. Chu and J. A. Woolam, Plenum, New York (1978) p. 299.CrossRefGoogle Scholar
  23. 23.
    J. Schroeder, K. J. Dunn, F. P. Bundy in: Proc. 8th AIRAPT Conf., eds. C. M. Backman, T. Johannisson, and L. Tegner, Arkitektkopia, Uppsala (1982) p. 259.Google Scholar
  24. 24.
    A. Polian, J. M. Besson, M. Grimsditch, H. Vogt, Phys. Rev. B25, 2767 (1982).Google Scholar
  25. 25.
    A. Polian, M. Grimsditch, Phys. Rev. B27, 6409 (1983).Google Scholar
  26. 26.
    E. M. Brody, H. Shimizu, H. K. Mao, P. M. Bell, W. A. Bassett, J. Appl. Phys. 52, 3583 (1981).CrossRefGoogle Scholar
  27. 27.
    S. A. Lee, D. A. Pinnick, S. M. Lindsay, R. C. Hanson, Phys. Rev. B34, 2799 (1986).Google Scholar
  28. 28.
    K. Ströbner, W. Henkel, H. D. Hochheimer, M. Cardona, Solid State Commun. 47, 567 (1983).CrossRefGoogle Scholar
  29. 29.
    A. Asenbaum, O. Blaschko, H. D. Hochheimer, Phys. Rev. B34, 1968 (1986).Google Scholar
  30. 30.
    Y. X. Yan, K. A. Nelson, J. Chem. Phys. 87, 6240, 6267 (1987).Google Scholar
  31. 31.
    Y. X. Yan, L. T. Cheng, K. A. Nelson, J. Chem. Phys. 88, 6477 (1988).CrossRefGoogle Scholar
  32. 32.
    S. M. Silence, S. R. Goates, K. A. Nelson, Chem. Phys. 149, 233 (1990).CrossRefGoogle Scholar
  33. 33.
    Y. X. Yan, private communications.Google Scholar
  34. 34.
    R. Y. Chiao, C. H. Townes, B. P. Stoicheff, Phys. Rev. Lett. 12, 592 (1964).CrossRefGoogle Scholar
  35. 35.
    A. G. Jacobson, Y. R. Shen, Appl. Phys. Lett. 34, 464 (1979).CrossRefGoogle Scholar
  36. 36.
    C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, Phys. Rev. Lett. 51, 1648 (1983).CrossRefGoogle Scholar
  37. 37.
    S. Y. Tang, C. Y. She, S. A. Lee, Opt. Lett. 12, 870 (1987).CrossRefGoogle Scholar
  38. 38.
    G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bischel, A. P. Hickman, Opt. Lett. 15, 703 (1990).CrossRefGoogle Scholar
  39. 39.
    K. Ratanaphruks, W. T. Grubbs and R. A. MacPhail, Chem. Phys. Letters (in press).Google Scholar
  40. 40.
    H. D. Hochheimer, M. L. Shand, J. E. Potts, R. C. Hanson, C. T. Walker, Phys. Rev. B14, 4630 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. S. Friedman
    • 1
  • B. L. Bracewell
    • 1
  • H. D. Hochheimer
    • 1
  • C. Y. She
    • 1
  1. 1.Department of PhysicsColorado State UniversityFort CollinsUSA

Personalised recommendations