Sulphur at High Pressure and Low Temperatures

  • B. Eckert
  • H. J. Jodl
  • H. O. Albert
  • P. Foggi
Part of the NATO ASI Series book series (NSSB, volume 286)


Molecular crystals1–3 are in general characterized by strong intramolecular forces and much weaker intermolecular forces. The molecular structure remains unaltered and the internal vibrations split off under the influence of the lattice field. One important property of such crystals is their large compressibility, a result of the weak external forces. Therefore pressure dependent investigations on vibrational modes are a good tool to test theoretical models, e.g. forms of potentials, approaches in lattice dynamics. As can be seen later temperature variation gives additional information about anharmonicity.


Raman Spectrum Internal Mode Isothermal Compressibility External Mode Pressure Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. 1.
    S. Califano, V. Schettino, and N. Neto, Lattice Dynamics of Molecular Crystals, Springer, Berlin (1981).CrossRefGoogle Scholar
  2. 2.
    B.A. Weinstein, and R. Zallen, Pressure-Raman Effects, in: Light Scattering in Solids, M. Cardona, and G. Guntherodt, eds., Springer, Berlin (1984).Google Scholar
  3. 3.
    A.J. Kitaigorodski, Molekülkristalle, Akademie, Berlin (1979).Google Scholar
  4. 4.
    B.E. Warren, and J.T. Burwell. J. Chem. Phys. 3 (1935) 6.CrossRefGoogle Scholar
  5. 5.
    S.C. Abrahams, Acta Cryst. 8 (1955) 661.CrossRefGoogle Scholar
  6. 6.
    S.J. Rettig, and J. Trotter, Acta Cryst. C43 (1987) 2260.Google Scholar
  7. 7.
    B. Meyer, Sulfur, in: The Structure of the Elements, J. Donohoe, ed., Wiley, New York (1974).Google Scholar
  8. 8.
    B. Meyer, Chem. Rev. 76 (1976) 367.CrossRefGoogle Scholar
  9. 9.
    H.J. Mäusle, and R. Steudel, Z. anorg. allg. Chem. 156 (1981) 125 and 177.Google Scholar
  10. 10.
    R. Steudel, Homocyclic Sulfur Molecules, in: Topics in Current Chemistry, Vol. 102, F.L. Boschke, ed., Springer, Berlin (1982).Google Scholar
  11. 11.
    D.W. Scott, J.P. McCullough, and F.H. Kruse, J. Mol. Spectry. 13 (1964) 313.CrossRefGoogle Scholar
  12. 12.
    C. Domingo, and S. Montero, J. Chem. Phys. 74 (1981) 862.CrossRefGoogle Scholar
  13. 13.
    G. Cardini et al., to be published (1991).Google Scholar
  14. 14.
    G.S. Pawley, R.P. Rinaldi, and C.G. Windsor, The Lattice Dynamics of Orthorhombic Sulphur, in: Proc. of the Int. Conf. on Phonons, M.A. Nusimovici, ed., Flammarion, Rennes (1971).Google Scholar
  15. 15.
    R.P. Rinaldi, and G.S. Pawley, J. Phys. C 8 (1975) 599.CrossRefGoogle Scholar
  16. 16.
    T. Luty, and G.S. Pawley, Phys. Stat. Sol. 69 (1975) 551.CrossRefGoogle Scholar
  17. 17.
    C.M. Gramaccioli, and G. Filippini, Chem. Phys. Lett. 108 (1984) 585.CrossRefGoogle Scholar
  18. 18.
    D. Dows, priv. comm. (1989), and (1991).Google Scholar
  19. 19.
    A. Anderson, and Y.T. Loh, Can. J. Chem. 47 (1969) 879.CrossRefGoogle Scholar
  20. 20.
    P.D. Harvey, and I.S. Butler, J. Raman Spectr. 17 (1986) 329.CrossRefGoogle Scholar
  21. 21.
    G.A. Ozin, J. Chem. Soc. A (1969) 116.Google Scholar
  22. 22.
    J.W. Arthur, and G.A. Mackenzie, J. Raman Spectr. 2 (1974) 199.CrossRefGoogle Scholar
  23. 23.
    A. Anderson, and L.Y. Wong, Can. J. Chem. 47 (1969) 2713.CrossRefGoogle Scholar
  24. 24.
    A. Anderson, and P.G. Boczar, Chem. Phys. Lett. 43 (1976) 506.CrossRefGoogle Scholar
  25. 25.
    G. Gautier, and M. Debeau, Spectrochim. Acta 30 A (1974) 1193.Google Scholar
  26. 26.
    R. Bini, B. Eckert, H.J. Jodl, and P. Foggi, to be published.Google Scholar
  27. 27.
    M. Becucci, E. Castellucci, P. Foggi, S. Califano, and D. Dows, to be published.Google Scholar
  28. 28.
    R. Zallen, Phys. Rev. B 9 (1974) 4485.CrossRefGoogle Scholar
  29. 29.
    M.L. Slade, R. Zallen, and B.A. Weinstein, Bull. Am. Phys. Soc. 27 (1982) 163.Google Scholar
  30. 30.
    L. Wang, Y. Zhao. R. Lu, Y. Meng, Y. Fan, H. Luo, Q. Cui, and G. Zou, High Pressure Raman and X-Ray Studies of Sulfur and its new Phase Transition, in: High Pressure Research in Mineral Physics, M.H. Manghnani, and Y. Syono, eds., Terra Scientific Publishing, Tokyo (1987).Google Scholar
  31. 31.
    W. Hafner, J. Kritzenberger, H. Olijnyk, and A. Wokaun, High Pressure Research 6 (1990) 57.CrossRefGoogle Scholar
  32. 32.
    G.S. Pawley, and K. Mika, Phys. Stat. Sol. 66 (1974) 679.CrossRefGoogle Scholar
  33. 33.
    J.V.E. Kurittu, Physica Scipta 21 (1980) 200.CrossRefGoogle Scholar
  34. 34.
    L.G. Liu, and W.A. Bassett, Elements, Oxides, and Silicates, Oxford University Press, Yew York (1986).Google Scholar
  35. 35.
    G. Huber, K. Syassen, and W.B. Holzapfel, Phys. Rev. B 15 (1977) 5123.CrossRefGoogle Scholar
  36. 36.
    H.K. Mao, P.M. Bell, J.W. Shanner, and D.J. Steinberg, J. Appl. Phys. 49 (1978) 3276.CrossRefGoogle Scholar
  37. 37.
    B.A. Weinstein, Rev. Sci. Instrum. 57 (1986) 910.CrossRefGoogle Scholar
  38. 38.
    G.A. Saunders, Y.K. Yogurtçu, J.E. Macdonald, and G.S. Pawley, Proc. R. Soc. Lond. A407 (1986) 325.Google Scholar
  39. 39.
    K.S. Viswanathan, Can. J. Phys. 41 (1963) 423.CrossRefGoogle Scholar
  40. 40.
    F.D. Medina, and W.B. Daniels, J. Chem. Phys. 64 (1976) 150.CrossRefGoogle Scholar
  41. 41.
    B.Eckert, H.J. Jodl, H.O. Albert, and P. Foggi, to be published.Google Scholar
  42. 42.
    P. Coppens, Y.W. Yang, R.H. Blessing, W.F. Cooper, and F.K. Larsen, J. Am. Chem. Soc. 99 (1977) 760.CrossRefGoogle Scholar
  43. 43.
    J. Wallis, J. Sigalas, and S. Hart, J. Appl. Cryst. 19 (1986) 273.CrossRefGoogle Scholar
  44. 44.
    R. Shuker, and R.W. Gammon, Phys. Rev. Lett. 25 (1970) 222.CrossRefGoogle Scholar
  45. 45.
    W. Dultz, H.D. Hochheimer, and W. Müller-Lierheim, One-phonon density-of-states from the Raman spectrum of disordered linear chains: fibrous sulphur, in: Proc. 5th Int. Conf. Amorphous and Liquid Semicond., J. Stuke, and W. Brenig, eds. Taylor and Francis, London 1974.Google Scholar
  46. 46.
    P. Wolf, B. Baer, M. Nicol, and M. Cynn, preprint (1990).Google Scholar
  47. 47.
    A.T. Ward, J. Phys. Chem. 72 (1968) 4133.CrossRefGoogle Scholar
  48. 48.
    B. Meyer, M. Gouterman, B. Jensen, T.V. Oommen, K. Spitzer, and T. Stroyer-Hansen, Sulfur Research Trends (1972) 53.Google Scholar
  49. 49.
    B. Meyer, Sulfur, Energy and Environment, Elsevier, Amsterdam 1977.Google Scholar
  50. 50.
    K. Syassen, priv. communication, (1990).Google Scholar
  51. 51.
    K. Raghavachari, C. McMichael Rohlfing, and J.S. Binkley, J. Chem. Phys. 93 (1990) 5862.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. Eckert
    • 1
  • H. J. Jodl
    • 1
  • H. O. Albert
    • 1
  • P. Foggi
    • 1
    • 2
  1. 1.Fachbereich PhysikUniversität KaiserslauternGermany
  2. 2.European Laboratory for non Linear Spectroscopy (LENS)FirenzeItaly

Personalised recommendations