Advertisement

High Pressure NMR: Hydrogen at Low Temperatures

  • Aziz Müfit Uluğ
  • Mark S. Conradi
  • R. E. Norberg
Chapter
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

We report NMR of solid hydrogen in a diamond anvil cell at temperatures 1.85 to 100 Kelvin. We examine the pressure dependence of the orientational ordering phase transition temperature.

Keywords

Diamond Anvil Cell Longitudinal Relaxation Time Solid Hydrogen Nuclear Magnetic Resonance Line High Pressure Equipment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abragam, “Principles of Nuclear Magnetism,” Oxford Science Publications, Oxford University Press, (1983).Google Scholar
  2. 2.
    G.E. Pake, Magnetic resonance, Scientific American, 199, 58 (1958).CrossRefGoogle Scholar
  3. 3.
    C.P. Slichter, “Principles of Magnetic Resonance,” Springer-Verlag, (1990).Google Scholar
  4. 4.
    S.H. Lee, K. Luszczynski, R.E. Norberg and M.S. Conradi, NMR in a diamond anvil cell, Rev. Sci. Inst., 58, (1987).Google Scholar
  5. 5.
    S.H. Lee, A Study of molecular Diffusion and Reorientation in Solid Hydrogen At Pressures 18 kbar-68 kbar, Washington University, Physics Department, Ph.D. Thesis, (1989).Google Scholar
  6. 6.
    Isaac F. Silvera, The solid molecular hydrogens in condensed phase: Fundamentals and static properties, Rev. of Mod. Phys., 52, (1980).Google Scholar
  7. 7.
    F. Reif and E.M. Purcell, Nuclear magnetic resonance in solid hydrogen, Phys. Rev., 91, 631, (1953).CrossRefGoogle Scholar
  8. 8.
    Isaac F. Silvera and R. Jochemsen, Orientational ordering in solid hydrogen: Dependence of critical temperature and concentration on density, Phys. Rev. Lett., 43, 377, (1979).CrossRefGoogle Scholar
  9. 9.
    L.I. Amstutz, H. Meyer, S.M. Myers and D.C. Rorer, Study of nuclear magnetic resonance line shapes in solid H2, Phys. Rev., 181, 589, (1969).CrossRefGoogle Scholar
  10. 10.
    L.I. Amstutz, H. Meyer, S.M. Myers and R.L. Mills, Longitudinal nuclear relaxation measurements in hep H2, Phys. Chem. Solids, 30, 2693, (1969).CrossRefGoogle Scholar
  11. 11.
    J.R. Gaines and R.C. Souers, The spin-lattice relaxation time T1 in mixtures of hydrogen isotopes, Adv. in Mag. Res., 12, 91, (1988).Google Scholar
  12. 12.
    F. Weinhaus and H. Meyer, Nuclear longitudinal relaxation in hexagonal close packed H2, Phys. Rev. B, 7, 2974, (1973).CrossRefGoogle Scholar
  13. 13.
    P.L. Pedroni, R. Schweizer, H. Meyer, NMR relaxation times and line shapes in solid H2 at elevated densities, Phys. Rev. B, 14, 896, (1976).CrossRefGoogle Scholar
  14. 14.
    N.S. Sullivan and R.V. Pound, Nuclear spin relaxation of solid hydrogen at low temperatures, Phys. Rev. A, 6, 1102, (1972).CrossRefGoogle Scholar
  15. 15.
    H. Ishimoto, K. Nagamine and Y. Kimura, NMR Studies of solid hydrogen at low temperatures, J. Phys. Soc. Japan, 35, 300, (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Aziz Müfit Uluğ
    • 1
  • Mark S. Conradi
    • 1
  • R. E. Norberg
    • 1
  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations