Advertisement

Solid Hydrogen at Ultra High Pressure

  • Isaac F. Silvera
Chapter
Part of the NATO ASI Series book series (NSSB, volume 286)

Abstract

In recent years the diamond anvil cell (DAC) technique has been developed to statically compress matter, with pressures reaching into the hundreds of gigapascals (100 GPa = 1 megabar). One of the most interesting substances to study under these conditions is solid hydrogen, which is predicted to have a number of phase transitions, including the insulator-metal (IM) transition. At very high pressures of order 300–400 GPa, hydrogen is predicted to become a metallic atomic solid (Wigner and Huntington, 1935; Ceperley and Alder, 1987). However, it is expected that hydrogen first becomes a metal at somewhat lower pressures, within the molecular solid phase, by an electronic band overlap mechanism (Ramaker et al., 1975; Friedli and Ashcroft, 1977). Phase transitions in hydrogen have been studied by a number of methods, including Raman scattering and optical reflection and absorption. An unexpected new phase has been shown to exist for pressures above 149 GPa by study of the pressure-temperature phase line (Lorenzana, Silvera, and Goettel, 1989). This phase is called the hydrogen-A (H-A) phase and it is suspected, on a number of grounds that the H-A phase is metallic. However, at this time there is no direct evidence to support this interpretation. On the theoretical side calculations have predicted band gap closure, or metallization, at a pressure of 150–180 GPa for a structure with the hcp lattice with molecules oriented along the c-axis (Garcia et al., 1990). Again, uncertainties arise, as recent calculations find a different structure to have a lower energy and a larger gap and metallization pressure. In this article I shall discuss the recent rapid developments in this challenging area of research.

Keywords

Local Density Approximation Orientational Order Diamond Anvil Cell Phase Line Drude Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft, N. W., 1990, Phys. Rev. B, 41:10963.CrossRefGoogle Scholar
  2. Barbée, T. W., III, Garcia, A., Cohen, M. L., and Martins, J. L., 1989, Phys. Rev. Lett. 62:1150.CrossRefGoogle Scholar
  3. Ceperley, D. M. and Aider, B. J., 1987, Phys. Rev. B 36:2092.CrossRefGoogle Scholar
  4. Chacum, H., Louie, S. G., Phys. Rev. Lett. 66:64.Google Scholar
  5. Eggert, J. H., Goettel, K. A., and Silvera, I. F., 1990, High pressure dielectric catastrophe and the possibility that the hydrogen-A phase is metallic, Europhys. Lett. 11:775.CrossRefGoogle Scholar
  6. Addendum, Europhys. Lett. 12:381.Google Scholar
  7. Eggert, J. H., Moshary, F., Evans, W. J., Lorenzana, H. E., Goettel, K. A., and Silvera, I. F., 1991, Absorption and reflectivity in hydrogen up to 230 GPa: implications for metallization, Phys. Rev. Lett. 66:193.CrossRefGoogle Scholar
  8. Freiman, Y. A., Sumarkov, V. V., Brodyanskii, A. P., and Jezowski, A., 1991, preprint.Google Scholar
  9. Friedli, C. and Ashcroft, N. W., 1977, Phys. Rev. B 16:662.CrossRefGoogle Scholar
  10. Garcia, A., Barbee, T. W., III, Cohen, M. L., and Silvera, I. F., 1990, Bandgap closure and metallization of molecular solid hydrogen, Europhysics Lett. 13:355.CrossRefGoogle Scholar
  11. Garcia, A., Cohen, M. L., Moshary, F., Eggert, J. H., Evans, W. J., Goettel, K. A., and Silvera, I. F., 1991a, to be published.Google Scholar
  12. Garcia, A., Chacum, H., Louie, S. L., and Cohen, M. L., 1991b, private communication.Google Scholar
  13. Goettel, K. A., Eggert, J. H., Silvera, I. F., and Moss, W. C, 1989, Optical evidence for the metallization of xenon at 132(5) GPa, Phys. Rev. Lett. 62:665.CrossRefGoogle Scholar
  14. Hanfland, M., Hemley, R. J., and Mao, H. K., 1991, Phys. Rev. B 43:8767.CrossRefGoogle Scholar
  15. Hemley, R. J. and Mao, H. K., 1988, Phys. Rev. Lett. 61:857.CrossRefGoogle Scholar
  16. Hemley, R. J. and Mao, H. K., 1989, Phys. Rev. Lett. 63:1393.CrossRefGoogle Scholar
  17. Hemley, R. J., Mao, H. K., and Shu, J. F., 1990a, Phys. Rev. Lett. 65:2670.CrossRefGoogle Scholar
  18. Hemley, R. J. and Mao, H. K., 1990b, Science, 249:391.CrossRefGoogle Scholar
  19. Hemley, R. J., 1990c, private communication.Google Scholar
  20. Kaxiras, E., Broughton, J., and Hemley, R. J., 1991, preprint.Google Scholar
  21. Lagendijk, A., and Silvera, I. F., 1981, Roton softening in the solid hydrogens, Phys. Rev. Lett. 84A:28.Google Scholar
  22. Lorenzana, H. E., Silvera, I. F., and Goettel, K.A., 1989, Evidence for a structural phase transition in solid hydrogen at megabar pressures, Phys. Rev. Lett. 63:2080.CrossRefGoogle Scholar
  23. Lorenzana, H. E., Silvera, I. F., and Goettel, K.A., 1990a, Orientational phase transitions in hydrogen at megabar pressures, Phys. Rev. Lett. 64:1939.CrossRefGoogle Scholar
  24. Lorenzana, H. E., Silvera, I. F., and Goettel, K. A., 1990b, The order parameter and a critical point on the megabar pressure hydrogen-A phase line, Phys. Rev. Lett. 65:1901.CrossRefGoogle Scholar
  25. Mao, H. K. and Hemley, R. G., 1989, Science, 244:1462.CrossRefGoogle Scholar
  26. Mao, H. K., Hemley, R. J., and Hanfland, M., 1990, Phys. Rev. Lett. 65:484.CrossRefGoogle Scholar
  27. Ramaker, D. E., Kumar L., and Harris, F. E., 1975, Phys. Rev. Lett. 34:812.CrossRefGoogle Scholar
  28. Ree, F., and Bender, C. F., 1979, J. Chem. Phys. 71:5362.CrossRefGoogle Scholar
  29. Ruoff, A. L. and Vanderborgh, C. A., 1991, Phys. Rev. Lett. 66:739.CrossRefGoogle Scholar
  30. Silvera, I. F., and Jochemsen, R., 1979, Orientational ordering in solid hydrogen: dependence of critical temperature and concentration on density, Phys. Rev. Lett. 43:377.CrossRefGoogle Scholar
  31. Silvera, I. F., 1980, The solid molecular hydrogens in the condensed phase: Fundamentals and Static Properties, Rev. Mod. Phys. 52:393.CrossRefGoogle Scholar
  32. Silvera, I. F. and Wijngaarden, R. J., 1981, New low temperature phase of molecular deuterium at ultra high pressure,” Phys. Rev. Lett. 47:39.CrossRefGoogle Scholar
  33. Silvera, I. F., 1989, The phase diagram and excitations in solid hydrogen: prospects for metallization, in: “Simple Molecular Systems at Very High Density,” Polian and P. Loubeyre, eds., Plenum Press, New York.Google Scholar
  34. Silvera, I. F., 1990a, Science, 247:863.CrossRefGoogle Scholar
  35. Silvera, I. F., Eggert, J. H., Goettel, K. A., Lorenzana, H.E., 1990b, Towards metallic hydrogen at high pressure; Pucci, R., Picaito, G., 1991, Molecular Systems under Pressure, eds., North Holland Publ. Co., Amsterdam, 181.Google Scholar
  36. Silvera, I. F., 1991, The insulator-metal transition in molecular hydrogen and the three-state potts model, Physica B 169:551.CrossRefGoogle Scholar
  37. Shimizu, H., Brody, E. M., Mao, H. K., and Bell, P. M., 1981, Phys. Rev. Lett. 47:128.CrossRefGoogle Scholar
  38. Surh, M., Louie, S., Cohen, M. L., 1991, to be published.Google Scholar
  39. Syassen, K., 1990, private communication.Google Scholar
  40. Van Straaten, J., Wijngaarden, R.J., and Silvera, I. F., 1982, The low temperature equation of state of molecular hydrogen and deuterium to 0.37 megabar: Implications for metallic hydrogen, Phys. Rev. Lett. 48:97.CrossRefGoogle Scholar
  41. Van Straaten, J., and Silvera, I.F., 1988, Equation of state of solid molecular H2 and D2 at 5 Kelvin, Phys. Rev. B 37:1989.CrossRefGoogle Scholar
  42. Wigner, E. P. and Huntington, H. P., 1935, J. Chem. Phys. 3:764.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Isaac F. Silvera
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations