Skip to main content

Diffusion Properties of Brain Tissue Measured with Electrode Methods and Prospects for Optical Analysis

  • Chapter
Optical Imaging of Brain Function and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 333))

Abstract

In the context of this paper we shall discuss methods of measuring the diffusion of small molecules through the extracellular space of the brain. The study of such diffusion properties has relevance to the transport of metabolites, the spread of neuromodulators and the application of drugs to the brain. The extracellular space (ECS) is a component of the brain cell microenvironment (Schmitt and Samson 1969, Nicholson 1980, Cserr 1986). The movement of neuromodulators and neuroactive substances through this environment - so-called volume transmission - has been the topic of a recent symposium (Fuxe and Agnati 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikens, R. S., Agard, D. A. & Sedat, J. W. (1989). Solid-state imagers for microscopy. In: Methods in Cell Biology. Volume 29. “Fluorescent Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy”. eds. Wang, Y.-L. and Taylor, D. L. San Diego: Academic, pp 291–313.

    Google Scholar 

  • Ammann, D. (1986). “Ion-Selective Microelectrodes”. Berlin: Springer-Verlag.

    Google Scholar 

  • Blasdel, G. G. (1989). Visualization of neuronal activity in monkey striate cortex. Ann. Rev. Physiol. 51, 561–581.

    Article  CAS  Google Scholar 

  • Cserr, H. F. (1986) The neuronal microenvironment. Ann. N. Y. Acad, Sci., 481: 1–391.

    Article  CAS  Google Scholar 

  • Cserr, H. F., DePasquale, M., Nicholson, C, Patlak, C. S., Pettigrew, K. D. and Rice, M. E. (1991) Extracellular volume decreases while cell volume is maintained by uptake of ions in rat cerebral cortex during acute hypernatremia. J. Physiol. 442: 277–295.

    PubMed  CAS  Google Scholar 

  • Chesler, M. (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiology 34: 401–427.

    Article  CAS  Google Scholar 

  • Cohen, L., Hopp, H-P., Wu, J-Y. and Xiao, C. (1989) Optical measurements of action potential activity in invertebrate ganglia. Annual. Rev. Physiol. 51: 527–541.

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher, J. D. and Kaye, T. (1988) Drug “diffusion” within the brain. Ann. N. Y. Acad. Sci. 531: 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K. and Aganati, L. F. (1991) “Volume Transmission in the Brain: Novel Mechanisms for Neuronal Transmission”. Raven, New York.

    Google Scholar 

  • Lieke, E. E., Frostig, R. D., Arieli, A., Ts’o, D. Y., Hildesheim, R. and Grinvald, A. (1989) Optical imaging of cortical activity. Ann. Rev. Physiol. 51: 543–559.

    Article  CAS  Google Scholar 

  • Lux, H. D. and Neher, E. (1973) The equilibration time course of [K+]o in cat cortex. Exp Brain Res 17: 190–205.

    Article  PubMed  CAS  Google Scholar 

  • McBain, C. J., Traynelis, S. F. and Dingledine, R. (1990) Regional variation of extracellular space in the hippocampus. Science: 249: 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C. (1980) Dynamics of the brain cell microenvironment. Neurosci. Res. Prog. Bull. 18: 177–322.

    Google Scholar 

  • Nicholson, C. (1985) Diffusion from an arbitrary volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res. 333: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C. (1992). Quantitative analysis of extracellular space using the method of TMA+ iontophoresis and the issue of TMA+ uptake. Can. J. Physiol. Pharmacol. (in press).

    Google Scholar 

  • Nicholson, C. and Phillips, J. M. (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321: 225–257.

    PubMed  CAS  Google Scholar 

  • Nicholson, C, Phillips, J. M. and Gardner-Medwin A. R. (1979) Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res 169: 580–584.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C. and Rice, M. E. (1986a) The migration of substances in the neuronal microenvironment. Ann. N. Y. Acad. Sci. 481: 55–71.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C. and Rice, M. E. (1986b) Diffusion characteristics of skate (Rajaerinacea) cerebellum measured with tetramethylammonium and ion-selective microelectrodes. Mt. Desert Island Biol. Bull. 25: 54–55.

    Google Scholar 

  • Nicholson, C. and Rice, M. E. (1988). Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In: “Neuromethods; The Neuronal Microenvironment”. Eds. Boulton, A. A., Baker, G. B. & Walz, W. Clifton, NJ: Humana, pp 247–361.

    Chapter  Google Scholar 

  • Nicholson, C. and Rice, M. E. (1991) Diffusion of ions and transmitters in the brain cell microenvironment. In: “Volume Transmission in the Brain”. Eds. K. Fuxe and L. F. Agnati. New York: Raven, pages 279–294.

    Google Scholar 

  • Nugent. L. J. and Jain, R. K. (1984a). Plasma pharmacokinetics and interstitial diffusion of macromolecules in a cappillary bed. Am. J. Physiol. 246: H129–H137.

    PubMed  CAS  Google Scholar 

  • Nugent. L. J. and Jain, R. K. (1984b) Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44: 238–244.

    PubMed  CAS  Google Scholar 

  • Oehme, M. and Simon, W. (1976) Microelectrode for K+ based on a neutral carrier and comparison of its characteristics with a cation exchanger sensor. Analyticaxhim. Acta. 86: 21–25.

    Article  CAS  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky S. A., and Vetterling, W. T. (1986) “Numerical Recipes”. Cambridge University Press, London. Chapter 10.

    Google Scholar 

  • Rice, M. E. and Nicholson, C. (1989) Measurement of nanomolar dopamine diffusion using low-noise perflorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry. Analyt. Chem. 61: 1805–1810.

    Article  CAS  Google Scholar 

  • Rice, M. E. and Nicholson, C. (1991) Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum. J. Neurophysiol. 65: 264–272.

    PubMed  CAS  Google Scholar 

  • Safranyos, R. G. A. and Caveney, S. (1985) Rates of diffusion of fluorescent molecules via cell-to-cell membrane channels in a developing tissue. J. Cell Biol. 100: 736–747.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O. (1984) Molecular regulators of brain function: A new view. Neuroscience 13: 991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O. and Samson, F. E. Jr. (1969) Brain cell microenvironment. Neurosci. Res. Progr. Bull. 7: 277–417.

    Google Scholar 

  • Spring, K. R. and Lowy, R. J. (1989) Characteristics of low light level television cameras. In: Methods in Cell Biology. Volume 29. “Fluorescent Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy”, eds. Wang, Y.-L. and Taylor, D. L. San Diego: Academic, pp 269–289.

    Google Scholar 

  • Taylor, D. L. and Wang, Y.-L. eds. (1989). Methods in Cell Biology. Volume 30. “Fluorescent Microscopy of Living Cells in Culture. Part B. Quantitative Fluorescence Microscopy-Imaging and Spectroscopy”. San Diego: Academic.

    Google Scholar 

  • Tsien, R. Y. (1989). Fluorescent indicators of ion concentration. In: Methods in Cell Biology. Volume 29. “Fluorescent Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy”, eds. Wang, Y.-L. and Taylor, D. L. San Diego: Academic, pp 127–156.

    Chapter  Google Scholar 

  • Wang, Y.-L. and Taylor, D. L. eds. (1989). Methods in Cell Biology. Volume 29. “Fluorescent Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy”. San Diego: Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nicholson, C., Tao, L. (1993). Diffusion Properties of Brain Tissue Measured with Electrode Methods and Prospects for Optical Analysis. In: Dirnagl, U., Villringer, A., Einhäupl, K.M. (eds) Optical Imaging of Brain Function and Metabolism. Advances in Experimental Medicine and Biology, vol 333. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2468-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2468-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2470-4

  • Online ISBN: 978-1-4899-2468-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics