Skip to main content

Intracellular Ion Concentrations in the Brain: Approaches Towards in Situ Confocal Imaging

  • Chapter
Optical Imaging of Brain Function and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 333))

Abstract

In the central nervous system, regulation of intracellular ion concentrations is of paramount importance for cell function. Intracellular ion concentrations control fundamental cellular processes like gene expression, metabolism, or excitability. Accordingly, disturbances of ion concentrations play a key role in many diseases, particularly in cerebral ischemia. This article focusses on:

  1. 1.

    a brief review of physiological and pathophysiological mechanisms of intracellular pH ([H+]i) and Calcium ([Ca2+]i) regulation,

  2. 2.

    the description of available techniques to reveal intracellular ion concentrations with particular emphasis on optical approaches, and

  3. 3.

    the presentation of first results from a new approach to measure intracellular ion concentrations in acute rat brain slices and in the intact brain with an optical method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349: 694–697.

    Article  PubMed  CAS  Google Scholar 

  • Adams SR, Kao JPY, Tsien RY (1989) Biologically useful chelators that take up Ca2+ upon illumination. J Am Chem Soc 111: 7975–7986.

    Google Scholar 

  • Ahmed Z, Lewis CA, Faber DS (1990) Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res 516: 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Alford S, Collingridge GL (1990) Simultaneous whole-cell patch-clamp recording and imaging of single pyramidal neurones in rat hippocampal slices. J Physiol 435: 5P.

    Google Scholar 

  • Alford S, Collingridge GL (1991) Somatic Ca2+ entry following repetitive synaptic stimulus in patch-clamped CA1 pyramidal neurones in rat hippocampal slices. J Physiol 435: 44P.

    Google Scholar 

  • Alford SA, Schofield G, Collingridge GL (1991) Dentritic Ca2+ transients associated with NMDA receptor-mediated synaptic currents in rat hippocampal slices. J Physiol 483: 255P.

    Google Scholar 

  • Aronowski J, Grotta JC, Waxham MN (1992) Ischemia-induced translocation of Ca2+/Calmodulin-dependent protein kinasell: potential role in neuronal damage. J Neurochem 58: 1743–1753.

    Article  PubMed  CAS  Google Scholar 

  • Balduini W, Candura SM, Costa LG (1991) Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain. Dev Brain Res 62: 115–120.

    Article  CAS  Google Scholar 

  • Barish ME (1991) Increases in intracellular calcium ion concentration during depolarisation of cultured embryonic xenopus spinal neurones. J Physiol 444: 545–565.

    PubMed  CAS  Google Scholar 

  • Baskys A (1992) Metabotropic receptors and’ slow’ excitatory actions of glutamate agonists in the hippocampus. Trends Neurosci 15: 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Represa A (1990) Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 13: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Benson DM, Knopp JA (1984) Effect of tissue absorption and microscope optical parameters on the depth of penetration for fluorescence and reflectance measurements of tissue samples. Photochem Photobiol 39: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H (1991) The excitotoxin hypothesis in relation to cerebral ischemia. Cereb Brain Metab Rev 3: 213–245.

    CAS  Google Scholar 

  • Benveniste H, Diemer NH (1988) Early postischemic 45Ca accumulation in rat dentate hilus. J Cereb Blood Flow Metab 8: 713–719.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11: 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Brakenhoff GJ, van-der-Voort HT, van-Spronsen EA, Nanninga N (1989) Three-dimensional imaging in fluorescence by confocal scanning microscopy. J Microsc 153: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Brorson JR, Bleakman D, Chard PS, Miller RJ (1992) Calcium directly permeates kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured cerebellar Purkinje neurons. Mol Pharmacol 41: 603–608.

    PubMed  CAS  Google Scholar 

  • Buchan A, Li H, Pulsinelli A (1991) The N-methyl-D-aspartate antagonist mk-801 fails to protect against neuronal damage caused by transient severe forebrain ischemia in adult rats. J Neurosci 11: 1049–1056.

    PubMed  CAS  Google Scholar 

  • Busa WB (1986) Mechanisms and consequences of pH-mediated cell regulation. Annu Rev Physiol 48: 389–402.

    Article  PubMed  CAS  Google Scholar 

  • Busto R, Dietrich WD, Globus MY-T, Valdez I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extend of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Campbell AK (1987) Intracellular calcium: friend or foe? Clin Sci 72: 1–10.

    PubMed  CAS  Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11: 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1987) Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol Lond 386: 571–601.

    PubMed  CAS  Google Scholar 

  • Carlsson K, Mossberg K (1992) Reduction of cross-talk between fluorescent labels in scanning laser microscopy. J Microsc 167: 23–37.

    Article  Google Scholar 

  • Carpenter-Deyo L, Duimstra JR, Hedstrom O, Reed DJ (1991) I. Toxicity to isolated hepatocytes caused by intracellular calcium indicator, Quin 2. J Pharm Exp Ther 258: 739–746.

    CAS  Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: Calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6: 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Chen ST, Hsu CY, Hogan EL, Juan HY, Banik NL, Balentine JD (1987) Brain calcium content in ischemie infarction. Neurology 37: 1227–1229.

    Article  PubMed  CAS  Google Scholar 

  • Chertok VM, Kotsiuba AE, Lariushkina AV (1989) [Histophysiology of tissue basophils of the cerebral dura mater after laser irradiation]. Biull Eksp Biol Med 108: 493–495.

    PubMed  CAS  Google Scholar 

  • Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34: 401–427.

    Article  PubMed  CAS  Google Scholar 

  • Chesler M, Kraig RP (1987) Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol 253: R666–R670.

    PubMed  CAS  Google Scholar 

  • Chesler M, Kraig RP (1989) Intracellular pH transients of mammalian astrocytes. J Neurosci 9(6): 2011–2019.

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemie damage. Trends Neurosci 11: 465–469.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 10: 2493–2501.

    PubMed  CAS  Google Scholar 

  • Cinelli AR, Kauer JS (1992) Voltage-sensitive dyes and functional activity in the olfactory pathway. Annu Rev Neurosci 15: 321–351.

    Article  PubMed  CAS  Google Scholar 

  • Cline HT, Tsien RW (1991) Glutamate-induced increase in intracellular Ca2+ in cultured frog tectal cells mediated by direct activation of NMDA receptor channels. Neuron 6: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Cohan CS, Connor JA, Kater SB (1987) Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J Neurosci 7: 3588–3599.

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TV (1987) NMDA receptors-their role in long-term potentiation. Trends Neurosci 10: 288–293.

    Article  CAS  Google Scholar 

  • Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41: 143–210.

    PubMed  CAS  Google Scholar 

  • Connor JA (1986) Digital imaging of free calcium changes and of spatial processes in single, mammalian central nervous system cells. Proc Natl Acad Sci USA 83: 6179–6183.

    Article  PubMed  CAS  Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RK (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240: 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1992) Anatomical organisation of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–279.

    Article  Google Scholar 

  • Crain BJ, Evenson DA, Polsky K, Nadler JV (1990) Electron microscopic study of the gerbil dentate gyrus after transient forebrain ischemia. Acta Neuropathol 79: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Crépel V, Krnjevic K, Ben-Ari Y (1992) Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose. Neuroscience 47: 579–587.

    Article  PubMed  Google Scholar 

  • Cull-Candy SG, Wyllie DJ (1991) Glutamate-receptor channels in mammalian glial cells. Ann N Y Acad Sci 633: 458–474.

    Article  PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Buchanan J, Smith SJ (1991) Neuronal activity elicits astrocyte Ca2+ waves and oscillations within hippocampal slices. Soc Neur Abstr 17: 57(Abstract).

    Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Daniell LC (1991) N-Methyl-D-Aspartate increases cytoplasmatic free calcium in mouse hippocampus. Neuropharmacology 30: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Dingledyne R (1984) Brain Slices. Plenum Press, New York.

    Book  Google Scholar 

  • Dirnagl U, Thorén P, Villringer A, Sixt G, Them A, Einhäupl KM (1993) Global forebrain ischemia in the rat: controlled reduction of cerebral blood flow by hypobaric hypotension and two-vessel occlusion. Neurol Res (in press).

    Google Scholar 

  • Dirnagl U, Villringer A, Einhäupl KM (1991) Imaging of intracellular pH in normal and ischemie rat brain neocortex using confocal laser scanning microscopy in vivo. J Cereb Blood Flow Metab 11, Suppl.2: S206(Abstract).

    Google Scholar 

  • Dirnagl U, Villringer A, Einhäupl KM (1992) In-vivo confocal scanning laser microscopy of the cerebral microcirculation. J Microsc 165: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Dixon AE, Damaskinos S, Atkinson MR (1991) A scanning confocal microscope for transmission and reflection imaging. Nature 351: 551–553.

    Article  Google Scholar 

  • Eberhard M, Erne P (1989) Kinetics of calcium binding to FLUO-3 determined by stopped-flow fluorescence. Biochem Bioph Res Commun 163: 309–314.

    Article  CAS  Google Scholar 

  • Eberhard M, Erne P (1991) Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun 180: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Faddis BT, Vijayan VK (1988) Application of glial fibrillary acidic protein immunohistochemistry in the quantification of astrocytes in the rat brain. Am J Anat 183: 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Fine A, Amos B, Durbin RM, McNaughton PA (1988) Confocal microscopy: applications in neurobiology. Trends Neurosci 11: 346–351.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S, Stevens CF (1988) Applications of quantitative measurements for assessing glutamate neurotoxicity. Proc Natl Acad Sci USA 85: 4071–4074.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A, Andersen CF, Schousboe A (1992) Possible role of cGMP in excitatory amino acid induced cytotoxicity in cultured cerebral cortical neurons. Neurochem Res 17: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara N, Takashi A, Endoh H, Warashina A, Shimoni K (1992) Changes in intracellular pH of mouse hippocampal slices responding to hypoxia and/or glucose depletion. Brain Res 572: 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Galambos R (1961) A glial-neural theory of brain function. Proc Natl Acad Sci USA 47: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Bonnekoh P, Miyazawa T, Hossmann KA, Kreutzberg GW (1992) Immunocytochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab 12: 257–296.

    Article  PubMed  CAS  Google Scholar 

  • Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc Natl Acad Sci USA 87: 3454–3458.

    Article  PubMed  CAS  Google Scholar 

  • Götz M, Bolz J (1992) Formation and preservation of cortical layers in slice cultures. J Neurobiol 23: 783–802.

    Article  PubMed  Google Scholar 

  • Grinstein S, Rothstein A (1986) Mechanisms of regulation of the Na+/H+ exchanger. J Membrane Biol 90: 1–12.

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148.

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kikushi H, Ishikawa M, Kobayashi S (1992) Regional imaging of brain tissue calcium ions using Aequorin. J Cereb Blood Flow Metab 12: 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Haugland RP (1992) Molecular Probes handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene, OR,.

    Google Scholar 

  • Hayashi H, Miyata H, Noda N, Kobayashi A, Hirano M, Kawai T, Yamazaki N (1992) Intracellular Ca2+ concentration and pHi during metabolic inhibition. Am J Physiol 262: C628–C634.

    PubMed  CAS  Google Scholar 

  • Hell S, Witting S, Schickfus V. M, Winjendts van Resandt RW, Hunklinger S, Smolka E (1991) A confocal beam scanning white-light microscope. J Microsc 163: 179–187.

    Article  Google Scholar 

  • Hernandez-Cruz A, Sala F, Adams PR (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science 247: 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann KS (1983) Platelet aggregation induced in the hamster cheek pouch by a photochemical process with excited fluorescein isothiocyanate-dextran. Microvasc Res 26: 238–249.

    Article  PubMed  CAS  Google Scholar 

  • Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinas RR (1991) Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci USA 88: 7076–7080.

    Article  PubMed  CAS  Google Scholar 

  • Hirano Y, Okajima F, Tomura H, Majid MA, Takeuchi T, Kondo Y (1991) Change of intracellular calcium of neuronal cells induced by extracellular ATP. FEBS Letters 284: 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkiss RJ, Jones GW, Long A, Middleton RW, Parrick J, Stratford MRL, Wardman P, Wilson GD (1991) Fluorescent markers for hypoxic cells: a study of nitroaromatic compounds, with fluorescent heterocyclic side chains, that undergo bioreductive binding. J Med Chem 34: 2268–2274.

    Article  PubMed  CAS  Google Scholar 

  • Holliday J, Spitzer NC (1990) Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev Biol 141: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition. Science 252: 851–853.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Fukui H, Ito S, Wada H (1991a) Type-2 astrocytes show intracellular Ca2+ elevation in response to various neuroactive substances. Neurosci Lett 128: 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Fukui H, Ito S, Yamatodani A, Wada H (1991b) Single type-2 astrocytes show multiple independent sites of Ca2+ signaling in response to histamine. Proc Natl Acad Sci USA 88: 4215–4219.

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Benz AM, Clifford DB, Zorumski CF (1992) Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci Lett 135: 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Jensen AM, Chiu SY (1991) Differential intracellular calcium responses to glutamate in type 1 and type 2 cultured brain astrocytes. J Neurosci 11: 1674–1684.

    PubMed  CAS  Google Scholar 

  • Jensen AM, Chui SY (1990) Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J Neurosci 10: 1165–1175.

    PubMed  CAS  Google Scholar 

  • Jensen MB, Jorgensen MB, Finsen BR, Castellano B, Diemer NH (1990) Microglial and astroglial reactions to transient cerebral ischemia in the adult rat hippocampus. Eur J Neurosci 3: 220(Abstract).

    Google Scholar 

  • Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330: 163–165.

    Article  PubMed  CAS  Google Scholar 

  • Kao JPY, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by Fluo-3. J Biol Chem 264: 8179–8184.

    PubMed  CAS  Google Scholar 

  • Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, Tsubokawa T (1991) Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo. Brain Res 558: 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Katsura K, Ekholm A, Asplund B, Siesjö BK (1991) Extracellular ph in the brain during ischemia: relationship to the severity of lactic acidosis. J Cereb Blood Flow Metab 11: 597–599.

    Article  PubMed  CAS  Google Scholar 

  • Katz LT, Yuste R (1991) Spontaneous calcium transients in developing neocortical neurons. Soc Neur Abstr Vol 17 Part 2: 1470 (Abstract).

    Google Scholar 

  • Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg G (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26: 278–287.

    Article  PubMed  CAS  Google Scholar 

  • Knight RA, Ordidge RJ, Helpern JA, Chopp M, Rodolosi LC, Peck D (1991) Temporal evolution of ischemie damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22: 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Kogure K, Ohtomo H, Hayashi T, Sakamoto N, Sato H (1985) Calcium Accumulation in ischemic cell death. J Cereb Blood Flow Metab 5 (Suppl.1): S331.

    Google Scholar 

  • Koh J, Choi DW (1988) Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. J Neurosci 8: 2153–2163.

    PubMed  CAS  Google Scholar 

  • Koh JY, Palmer E, Cotman CW (1991a) Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neurotoxicity in cortical cultures. Proc Natl Acad Sci USA 88: 9431–9435.

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Palmer E, Lin A, Cotman CW (1991b) A metabotropic glutamate receptor agonist does not mediate neuronal degeneration in cortical culture. Brain Res 561: 338–343.

    Article  PubMed  CAS  Google Scholar 

  • Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49: 831–850.

    PubMed  CAS  Google Scholar 

  • Kraig RP, Pulsinelli WA, Plum F (1985) Heterogeneous distribution of hydrogen and bicarbonate ions during complete brain ischemia. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds) Progress in Brain Research. Elsevier, pp 155.

    Google Scholar 

  • Kudo Y, Takeda K, Yamazaki K (1990) Quin2 protects against neuronal cell death due to Ca2+ overload. Brain Res 528: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Lattanzio FA, Jr., Bartschat DK (1991) The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators. Biochem Biophys Res Commun 177: 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarisation and cortical spreading depression. J Cereb Blood Flow Metab 12: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Leonard BW, Barnes CA, Rao G, Heissenbuttel T, McNaughton BL (1991) The influence of postmortem delay on evoked hippocampal field potentials in the in vitro slice preparation. Exp Neurol 113: 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Herman TE (1978) Characterisation of Ionomycin as a calcium ionophore. J Biol Chem 253: 5892–5894.

    PubMed  CAS  Google Scholar 

  • Lucas DR, Newhouse DP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophtalmol 58: 193–201.

    Article  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA, Tse FWY (1989) Localneuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J Physiol 417: 197–212.

    PubMed  CAS  Google Scholar 

  • Marcoux FW, Probert AW (1988) NMDA and calcium channel antagonists inhibit hypoxia induced calcium influx in cultured cortical neurons. Stroke 19: 23.

    Google Scholar 

  • Martinez-Zaguilan R, Martinez GM, Lattanzio F, Gillies RJ (1991) Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of snarf-1 and fura-2. J Cell Physiol 29: C297–C307.

    Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of n-methyl-d-aspertic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394: 501–527.

    PubMed  CAS  Google Scholar 

  • McNaughton LA, Lagnado L, Socolovsky M, Hunt SP, McNaughton PA (1990) Use of the confocal microscope to measure changes in free (Ca2+)i in type 1 astrocytes cultured from rat cerebral cortex. J Physiol 424: 5P (Abstract).

    Google Scholar 

  • Meldolesi J, Volpe P, Pozzan T (1988) The intracellular distribution of calcium. Trends Neurosci 11: 449–452.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS (1985) Intracellular accumulation of calcium in ischaemic and epileptic brain damage. J Cereb Blood Flow Metab 5 (Suppl.1) S333–S334.

    Google Scholar 

  • Meyer FB (1989) Calcium, neuronal hyperexcitability and ischemic injury. Brain Res Rev 14: 227–243.

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Holowka D, Stryer L (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Michaels RL, Rothman SM (1990) Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci 10: 283–292.

    PubMed  CAS  Google Scholar 

  • Miller FN, Sims DE, Schuschke DA, Abney DL (1992) Differentiation of light-dye effects in the microcirculation. Microvasc Res 44: 166–184.

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1988) Calcium signaling in neurons. Trends Neurosci 11: 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Abele AE, Glaum SR, Scholz KP, Scholz WK (1990a) Pharmacological aspects of NMDA mediated neuronal death in vitro. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 227.

    Google Scholar 

  • Miller RJ, Abele AE, Glaum SR, Scholz KP, Scholz WK (1990b) Pharmacological aspects of NMDA mediated neuronal death in vitro. Am J Physiol.

    Google Scholar 

  • Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171–8178.

    PubMed  CAS  Google Scholar 

  • Moody W, Jr. (1984) Effects of intracellular H+ on the electrical properties of excitable cells. Annu Rev Neurosci 7: 257–278.

    Article  PubMed  Google Scholar 

  • Moore ED, Becker PL, Fogarty KE, Williams DA, Fay FS (1990) Ca2+ imaging in single living cells: theoretical and practical issues. Cell Calcium 11: 157–179.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1989) Stimulus transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12: 459.

    Article  PubMed  CAS  Google Scholar 

  • Morii S, Ngai AC, Winn HR (1986) Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats. J Cereb Blood Flow Metab 6: 34–41.

    Article  PubMed  CAS  Google Scholar 

  • Murray JM (1992) Neuropathology in Depth: The Role of Confocal Microscopy. J Neuropathol Neurol 51: 475–487.

    Article  CAS  Google Scholar 

  • Nahorski SR (1988) Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 11: 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Britnell S (1991) Calcium antagonists and tissue protection. J Cardiovasc Pharm 18-suppl 1: s1–5.

    Google Scholar 

  • Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Bruggencate GT, Steinberg R, Stockle H (1977) Calium modulation in brain extracellular microenvironment demonstrated with ion selective micropipette. Proc Natl Acad Sci USA 74: 1287–1290.

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164: 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Szamraj O, Houser CR (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 402: 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK (1992) Glial Cells. In: Handbook of physiology; Section I: The Nervous System, Volume 1. The American Physiological Sociey, Bethesda 1977, pp.855.

    Google Scholar 

  • O’Shaughnessy CT, Lythgoe DJ, Butcher SP, Kendall L, Wood B, Steward MC (1991) Effects of hypoxia on fetal rat brain metabolism studied in utero by 31p-nmr spectroscopy. Brain Res 551: 334–337.

    Article  PubMed  Google Scholar 

  • Paley SL, Chan-Paley V (1992) General morphology of neurons and neuroglia. In: Handbook of physiology; Section I: The Nervous System, Volume 1. The American Physiological Sociey, Bethesda 1977, pp.5.

    Google Scholar 

  • Pazdernik TL, Layton M, Nelson SR, Samson FE (1992) The osmotic/calcium stress theory of brain damage: are free radicals involved? Neurochem Res 17: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia induced neuronal damage. J Neurosci 10: 1035–1041.

    PubMed  CAS  Google Scholar 

  • Peng LA, Juurlink BH, Hertz L (1991) Differences in transmitter release, morphology, and ischemia-induced cell injury between cerebellar granule cell cultures developing in the presence and in the absence of a depolarizing potassium concentration. Dev Brain Res 63: 1–12.

    Article  CAS  Google Scholar 

  • Peres A, Bertollini L, Racca C (1991) Characterisation of Ca2+ transients induced by intracellular photorelease if InsP3 in mouse ovarian oocytes. Cell Calcium 12: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä T-RM, Kauppinen RA (1992) Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange. Neuroscience 47: 155–164.

    Article  PubMed  Google Scholar 

  • Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakade AR (1991) Stimulated rise in neuronal calcium is faster and greater in the nucleus than in the cytosol. FASEB J 5: 217–222.

    PubMed  CAS  Google Scholar 

  • Read ND, Allan WTG, Knight H, Knight MR, Malhó R, Russel A, Shacklock PS, Trewavas AJ (1992) Imaging and measurement of cytosolic free calcium in plant and fungal cells. J Microsc 166: 57–86.

    Article  CAS  Google Scholar 

  • Revest PA, Abbott NJ, Gillespie JI (1991) Receptor-mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells. Brain Res 549: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Rijen van PC, Verheul HB, Echteld van CJA, Balasz R, Lewis P, Nasim MM, Tulleken CAF (1991) Effects of dextromethorphan on rat brain during ischemia and reperfusion assesed by magnetic resonance spectroscopy. Stroke 22: 343–350.

    Article  PubMed  Google Scholar 

  • Rijkers GT, Justement LB, Griffioen AW, Cambier JC (1990) Improved method for measuring intracellular Ca++ with fluo-3. Cytometry 11: 923–927.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez J, Jacques-Berg W, Patel AJ (1991) Differential regulation of cerebellar granule neurons by two types of quisqualate receptors. Neuroreport 2: 517–520.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum WI, El-Sabban (1977) Platelet aggregation in the cerebral microcirculation. Effect of aspirin and other agents. Circ Res 40: 320–327.

    Article  CAS  Google Scholar 

  • Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A (1992) Three additional inositol 1,4,5-trisphosphate receptors: Molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci USA 89: 4265–4269.

    Article  PubMed  CAS  Google Scholar 

  • Scanlon M, Williams DA, Fay FS (1987) A Ca2+-insensitive form of fura-2 associated with polymorphonuclear leucocytes. J Biol Chem 262: 6308–6312.

    PubMed  CAS  Google Scholar 

  • Scheller D, Heister U, Dengler K, Peters T (1990) Do the excitatory amino acids aspartate and glutamate generate spreading depressions in vivo. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp.205.

    Google Scholar 

  • Schmidt-Kastner R, Ophoff BG, Hossmann KA (1990) Pattern of neuronal vulnerability in the cat hippocampus after one hour of global cerebral ischemia. Acta Neuropathol 79: 444–455.

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Teyler TJ, Tseng MT (1991) Brain slices: fundamentals applications and implications. Karger, Basel.

    Google Scholar 

  • Segal M, Manor D (1992) Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J Physiol 448: 655–676.

    PubMed  CAS  Google Scholar 

  • Sci Y, Arora PK (1991) Quantitative analysis of calcium (Ca2+) mobilization after stimulation with mitogens or anti-CD3 antibodies. J Immunol Meth 137: 237–244.

    Article  Google Scholar 

  • Siesjo BK, Memezawa H, Smith ML (1991) Neurocytotoxicity: pharmacological implications. Fundam Clin Pharmacol 5: 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK (1988) Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522: 638–661.

    Article  Google Scholar 

  • Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140.

    Article  PubMed  Google Scholar 

  • Silver LA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95: 837–866.

    Article  PubMed  CAS  Google Scholar 

  • Smith KL, Turner JN, Szarowski DH, Swann JW (1991) Three-dimensional imaging of neurophysiologically characterized hippocampal neurons by confocal scaning laser microscopy. Ann NY Acad Sci 627: 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, Augustine GJ (1988) Calcium ions, active zones and synaptic transmitter release. Trends Neurosci 11: 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Smith TL (1990) Regulation of intrasynaptosomal free calcium concentrations: studies with the fluorescent indicator, Fluo-3. Neurochem Int 16: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Burnashev N, Verdoorn TA, Keinanen K, Sakmann B, Seeburg PH (1992a) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11: 1651–1656.

    PubMed  CAS  Google Scholar 

  • Sommer B, Monyer H, Wisden W, Verdoorn TA, Burnashev N, Sprengel R, Sakmann B, Seeburg PH (1992b) Glutamate-gated ion channels in the brain. Genetic mechanism for generating molecular and functional diversity. Arzneimittelforschung 42: 209–210.

    CAS  Google Scholar 

  • Spedding M, Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44: 363–376.

    PubMed  CAS  Google Scholar 

  • Spring KR (1991a) Illumination, wavelength selection, and detection in fluorescence microscopy. Kidney Int 33: S18–S22.

    CAS  Google Scholar 

  • Spring KR (1991b) Detectors for fluorescence microscopy. Scanning Microscopy 5: 63–69.

    PubMed  CAS  Google Scholar 

  • Stelzer EH, Wacker I, De-Mey JR (1991) Confocal fluorescence microscopy in modern cell biology. Semin Cell Biol 2: 145–152.

    PubMed  CAS  Google Scholar 

  • Takamatsu T, Minamikawa T, Kawachi H, Fujita S (1991) Imaging of calcium wave propagation in guinea-pig ventricular cell pairs by confocal laser scanning microscopy. Cell Struct Funct 16: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Dichter M, Morad M (1991) Modulation of the NMDA channel by extracellular H+. Proc Natl Acad Sci USA 87: 6445–6449.

    Article  Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llinas RR (1991) Spatially resolved calcium dynamics of mammalian purkinje cells in cerebellar slice. Science 242: 773–777.

    Article  Google Scholar 

  • Teichberg VI (1991) Glial glutamate receptors: likely actors in brain signaling. FASEB J 5: 3086–3091.

    PubMed  CAS  Google Scholar 

  • Them A, Dirnagl U, Villringer A (1992) Confocal fluorescence imaging of (Ca2+)i-transients in acute rat brain slices using Fluo-3-AM in a small volume submerged chamber system. Soc Neur Abstr Vol.18 Part 2: 967 (Abstract).

    Google Scholar 

  • Tilton RG (1991) Capillary pericytes: perspectives and future trends. J Electron Micr Techn 19: 327–344.

    Article  CAS  Google Scholar 

  • Trump BF, Berezesky IK (1990) The importance of calcium regulation in toxic cell injury. Studies utilizing the technology of digital imaging fluorescence microscopy. Clin Lab Med 10: 531–547.

    CAS  Google Scholar 

  • Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11: 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Tsien RY (1991) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6: 715–760.

    Article  Google Scholar 

  • Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11: 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1989a) Fluorescent indicators of ion concentrations. Methods Cell Biol 30: 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1989b) Fluorescent probes of cell signaling. Annu Rev Neurosci; 12: 227–253.

    Article  PubMed  CAS  Google Scholar 

  • Turner JN, Szarowski DH, Smith KL, Marko M, Leith A, Swann JW (1991) Confocal microscopy and three-dimensional reconstruction of electrophysiologically identified neurons in thick brain slices. J Electron Micr Techn 18: 11–23.

    Article  CAS  Google Scholar 

  • Uematsu D, Greenberg JH, Reivich M, Karp A (1988a) In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann Neurol 24: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu D, Greenberg JH, Reivich M, Kobayashi S, Karp A (1988b) In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8: 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe PA, Ceuppens JL (1990) Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J Immunol Meth 127: 197–205.

    Article  CAS  Google Scholar 

  • Villringer A, Dirnagl U, Them A, Schürer L, Krombach F, Einhäupl KM (1991) Imaging of leukocytes within the rat brain cortex in vivo. Microvasc Res 42: 305–315.

    Article  PubMed  CAS  Google Scholar 

  • Vincent SL, Sorensen I, Benes FM (1991) Localisation and high-resolution imaging of cortical neurotransmitter compartments using confocal laser scanning microscopy: GABA and glutamate interactions in rat cortex. Biotechniques 11: 628–634.

    PubMed  CAS  Google Scholar 

  • Wahl P, Schousboe A, Honore T, Drejer J (1989) Glutamate induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J Neurochem 53: 1316–1319.

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272.

    Article  CAS  Google Scholar 

  • Williams DA, Becker PL, Fay FS (1987) Regional changes in calcium underlying contraction of single smooth muscle cells. Science 235: 1644–1648.

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1991) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature 318: 558–561.

    Article  Google Scholar 

  • Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6: 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Peinado A, Katz LC (1992) Neuronal groups revealed by optical recording of calcium transients in slices of developing neocortex. Soc Neur Abstr Vol.17 Part 2: 1470 (Abstract).

    Google Scholar 

  • Zivin JA, Choi DW (1991) Stroke therapy. Sci Am 7/91: 56–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Them, A. (1993). Intracellular Ion Concentrations in the Brain: Approaches Towards in Situ Confocal Imaging. In: Dirnagl, U., Villringer, A., Einhäupl, K.M. (eds) Optical Imaging of Brain Function and Metabolism. Advances in Experimental Medicine and Biology, vol 333. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2468-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2468-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2470-4

  • Online ISBN: 978-1-4899-2468-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics