Neurological Localization in Autism

  • Nancy J. Minshew
Part of the Current Issues in Autism book series (CIAM)


The location of the neuropathology responsible for the clinical syndrome of autism has been a hotly debated topic since the 1960s, when evidence for central nervous system involvement was first given serious consideration. Since that time, three fundamentally different localizations have been hypothesized for the primary neuropathology in autism: the brainstem-cerebellar circuitry, the limbic system, and the circuitry of the cerebral cortex. In the last decade, there have been major shifts in the data available to support each of these localizations and, consequently, in the theories themselves. Although there continues to be some degree of support for abnormalities at each of these levels within the neuraxis, the evolving body of scientific research appears to suggest primary involvement of forebrain structures in autism and, in particular, in the distributed neural network involved in complex information processing. However, examination of existing data also highlights the real paucity of data related to the neurobiologic issues and the need for research to target specific hypotheses on the location and mechanism of the primary pathophysiology in autism, to accumulate a substantial research data base on these issues, and to interpret these data across test modalities and across the spectrum of autism in order to ascertain the essential nature and location of the neurobiology.


Limbic System Auditory Brainstem Response Cerebellar Hemisphere Association Cortex Autistic Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aakrog, T. (1968). Organic factors in infantile psychoses and borderline psychoses. Danish Medical Bulletin, 15, 283–288.Google Scholar
  2. Ameli, R., Courchesne, E., Lincoln, A., Kaufman, A. S., & Grillon, C. (1988). Visual memory process in high-functioning individuals with autism. Journal of Autism and Developmental Disorders, 18(4), 601–615.PubMedCrossRefGoogle Scholar
  3. Bachevalier, J. (1990). Memory loss and socio-emotional disturbances following neonatal damage of the limbic system in monkeys: An animal model for childhood autism. In Advances in Psychiatry, Vol. 1: Schizophrenia. New York: RaveGoogle Scholar
  4. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46.PubMedCrossRefGoogle Scholar
  5. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1986). Mechanical, behavioral and intentional understanding of picture stories in autistic children. British Journal of Developmental Psychology, 4, 113–125.CrossRefGoogle Scholar
  6. Bauman, M. L., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.PubMedCrossRefGoogle Scholar
  7. Bauman, M. L., & Kemper, T. L. (1986). Developmental cerebellar abnormalities: A consistent finding in early infantile autism. Neurology, 36, 190.Google Scholar
  8. Bauman, M. L., & Kemper, T. L. (1989). Abnormal cerebellar circuitry in autism? Neurology, 39(1), 186.Google Scholar
  9. Bauman, M. L., & Kemper, T. L. (1990). Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology, 40(1), 359.Google Scholar
  10. Bauman, M. L., LeMay, M., Bauman, R. A., & Rosenberger, P. B. (1985). Computerized tomographic (CT) observations of the posterior fossa in early infantile autism. Neurology, 35(1), 247.Google Scholar
  11. Boucher, J. (1981). Immediate free recall in early childhood autism: Another part of behavioral similarity with the amnestic syndrome. British Journal of Psychiatry, 72, 211–215.Google Scholar
  12. Boucher, J., & Warrington, E. K. (1976). Memory deficits in early infantile autism: Some similarities to the amnesic syndrome. British Journal of Psychiatry, 67, 73–87.Google Scholar
  13. Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalography and Clinical Neurophysiology, 75, 207–220.PubMedCrossRefGoogle Scholar
  14. Colbert, E. G., Koegler, R. R., & Markham, C. H. (1959). Vestibular dysfunctions in childhood schizophrenia. Archives of General Psychiatry, 1, 600–617.PubMedCrossRefGoogle Scholar
  15. Courchesne, E., Elmasian, R. O., & Yeung-Courchesne, R. (1987). Electrophysiological correlates of cognitive processing: P3b and Nc., basic, clinical and developmental research. In A. M. Halliday, S. R. Butler, & R. Paul (Eds.), A textbook of clinical neurophysiology. Sussex, England: John Wiley & Sons.Google Scholar
  16. Courchesne, E., Hesselink, J. R., Jernigan, T. L., & Yeung-Courchesne, R. (1987). Abnormal neuroanatomy in a non-retarded person with autism. Archives of Neurology, 44, 335–341.PubMedCrossRefGoogle Scholar
  17. Courchesne, E., Kilman, B. A., Galambos, R., & Lincoln, A. J. (1984). Autism: Processing of novel auditory information assessed by event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 59(3), 238–248.PubMedCrossRefGoogle Scholar
  18. Courchesne, E., Lincoln, A. J., Kilman, B. A., & Galambos, R. (1985). Event-related brain potential correlates of the processing of novel visual and auditory information in autism. Journal of Autism and Developmental Disorders, 75(1), 55–76.CrossRefGoogle Scholar
  19. Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in non-retarded autism and receptive developmental language disorders. Journal of Autism and Developmental Disorders, 19, 1–17.PubMedCrossRefGoogle Scholar
  20. Courchesne, E., Yeung-Courchesne, R., Hicks, G., & Lincoln, A. J. (1985). Functioning of the brain stem auditory pathway in non-retarded autistic individuals. Electroencephalography and Clinical Neurophysiology, 51, 491–501.CrossRefGoogle Scholar
  21. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia in cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318, 1349–1354.PubMedCrossRefGoogle Scholar
  22. Damasio, A. R., & Maurer, R. G. (1978). A neurological model for childhood autism. Archives of Neurology, 35, 777–786.PubMedCrossRefGoogle Scholar
  23. Damasio, H., Maurer, R. G., Damasio, A. R., & Chui, H. C. (1980). Computerized tomographic scan findings in patients with autistic behavior. Archives of Neurology, 37, 504–510.PubMedCrossRefGoogle Scholar
  24. Dawson, G. (1983). Lateralized brain function in autism: Evidence from the Halstead-Reitan Neuropsychological Battery. Journal of Autism and Developmental Disorders, 13, 369–386.CrossRefGoogle Scholar
  25. DeLong, G. R. (1978). A neuropsychological interpretation of infantile autism. In M. Rutter & E. Schopler (Eds.), Autism. New York: Plenum.Google Scholar
  26. DeVoider, A., Bol, A., Michel, C., Cogneau, M., & Goffinet, A. M. (1987). Brain glucose metabolism in children with the autistic syndrome: Positron tomography analysis. Brain Development, 9, 581–587.CrossRefGoogle Scholar
  27. Fein, D., Skoff, B., & Mirsky, A. F. (1981). Clinical correlates of brainstem dysfunction in autistic children. Journal of Autism and Developmental Disorders, 11, 303–315.PubMedCrossRefGoogle Scholar
  28. Frith, U., & Snowling, M. (1983). Reading for meaning and reading for sound in autistic and dyslexic children. British Journal of Developmental Psychology, 1, 329–343.CrossRefGoogle Scholar
  29. Fyffe, C., & Prior, M. R. (1978). Evidence of language recoding in autistic children: A re-examination. British Journal of Psychiatry, 69, 393–403.Google Scholar
  30. Gaffney, G. R., Kuperman, S., & Tsai, L. Y. (1989). Forebrain structure in infantile autism. Journal of the American Academy of Child and Adolescent Psychiatry, 28(4), 534–537.PubMedCrossRefGoogle Scholar
  31. Gaffney, G. R., Kuperman, S., Tsai, L. Y., & Minchin, S. (1988). Morphological evidence for brainstem involvement in infantile autism. Biological Psychiatry, 24, 578–586.PubMedCrossRefGoogle Scholar
  32. Gaffney, G. R., Kuperman, S., Tsai, L. Y., Minchin, S., & Hassanein, K. M. (1987). Midsagittal magnetic resonance imaging of autism. British Journal of Psychiatry, 151, 831–833.PubMedCrossRefGoogle Scholar
  33. Gaffney, G. R., Tsai, L. Y., Kuperman, S., & Minchin, S. (1987). Cerebellar structure in autism. American Journal of Disorders of Childhood, 141, 1330–1332.Google Scholar
  34. Garber, H. J., Ritvo, E. R., Chiu, L. C., Griswold, V. J., Kashanian, A., Freeman, B. J., & Oldendorf, W. H. (1989). A magnetic resonance imaging study of autism: Normal fourth ventricle size and absence of pathology. American Journal of Psychiatry, 146, 532–534.PubMedGoogle Scholar
  35. Gillberg, C., Rosenhall, U., & Johansson, E. (1983). Auditory brainstem responses in childhood psychosis. Journal of Autism and Developmental Disorders, 13, 181–195.PubMedCrossRefGoogle Scholar
  36. Grillon, C., Courchesne, E., & Akshoomoff, N. (1989). Brainstem and middle latency auditory evoked potentials in autism and developmental language disorder. Journal of Autism and Developmental Disorders, 79(2), 255–269.CrossRefGoogle Scholar
  37. Hashimoto, T., Tayama, M., Mori, K., Fujino, K., Miyazaki, M., & Kuroda, Y. (1989). Magnetic resonance imaging in autism: Preliminary report. Neuropediatrics, 20, 142–146.PubMedCrossRefGoogle Scholar
  38. Hauser, S. L., DeLong, G. R., & Rosman, N. P. (1975). Pneumographic finding in the infantile autism syndrome: A correlation with temporal lobe disease. Brain, 98, 667–688.PubMedCrossRefGoogle Scholar
  39. Heath, R. G., Dempsey, C. W., Fontana, C. J., & Myers, W. A. (1978). Cerebellar stimulation: Effects on septal region, hippocampus, and amygdala of cats and rats. Biological Psychiatry, 113, 501–529.Google Scholar
  40. Hermelin, B. (1976). Coding and the sense modalities. In L. Wing (Ed.), Early childhood autism: Clinical, educational and social aspects (2nd ed.). Oxford: Pergamon.Google Scholar
  41. Hermelin, B., & O’Connor, N. (1970). Psychological experiments with autistic children. Oxford: Pergamon.Google Scholar
  42. Herold, S., Frackowiak, R. S. J., LeCouteur, A., Rutter, M., & Howlin, P. (1988). Cerebral blood flow and metabolism of oxygen and glucose in young autistic adults. Psychological Medicine, 18, 823–831.PubMedCrossRefGoogle Scholar
  43. Hier, D. B., LeMay, M., & Rosenberger, P. B. (1979). Autism and unfavorable left-right asymmetries of the brain. Journal of Autism and Developmental Disorders, 9, 153–159.PubMedCrossRefGoogle Scholar
  44. Hoffman, W. L., & Prior, M. R. (1982). Neuropsychological dimensions of autism in children: A test of the hemispheric dysfunction hypothesis. Journal of Clinical Neuropsychology, 4, 27–41.CrossRefGoogle Scholar
  45. Horwitz, B., Rumsey, J. M., Grady, C., & Rapoport, S. I. (1987). Interregional correlations of glucose utilization among brain regions in autistic adults. Annals of Neurology, 22, 118.Google Scholar
  46. Kanner, L. (1943). Autistic disturbance of affective contact. Nervous Child, 2, 217–250.Google Scholar
  47. LaLonde, R., & Botez, M. I. (1986). The role of the cerebellum in visuospatial learning: Experimental studies. Neurology, 36(1), 263.Google Scholar
  48. Leaton, R. N., & Supple, W. F. (1986a). Cerebellar vermis: Essential for long-term habituation of the acoustic startle response. Science, 232, 513–515.PubMedCrossRefGoogle Scholar
  49. Leaton, R. N., & Supple, W. F. (1986b). Long-term habituation of acoustic startle following lesions of the cerebellar vermis or cerebellar hemisphere. Abstracts of the Society for Neuroscience, 12, 978.Google Scholar
  50. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.PubMedCrossRefGoogle Scholar
  51. Lincoln, A. J., Courchesne, E., Kilman, B. A., Elmasian, R., & Allen, M. (1988). A study of intellectual abilities in high-functioning people with autism. Journal of Autism and Developmental Disorders, 18(4), 505–524.PubMedCrossRefGoogle Scholar
  52. Lockyer, L., & Rutter, M. (1970). A five-year follow-up study of infantile psychosis: IV. Patterns of cognitive ability. British Journal of Social and Clinical Psychology, 9, 152–163.PubMedCrossRefGoogle Scholar
  53. MacDonald, H., Rutter, M., Howlin, P., Rios, P., LeCouteur, A., Evered, C., & Folstein, S. (1989). Recognition and expression of emotional cues by autistic and normal adults. Journal of Child Psychology and Psychiatry, 30, 865–877.PubMedCrossRefGoogle Scholar
  54. Maurer, R. G. (1989, February). A case of congenital amnesic syndrome: A counter-example to theories of limbic system dysfunction as a case of autism. Presented at the International Neuropsychological Society meeting.Google Scholar
  55. McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.PubMedCrossRefGoogle Scholar
  56. Melchior, J. C., Dyggve, H. V., & Gylstorff, H. (1961). Pneumoencephalographic examination of 207 mentally retarded patients. Danish Medical Bulletin, 12, 38–42.Google Scholar
  57. Mesulam, M. (1985). Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. Principles of Behavioral Neurology, 1–70.Google Scholar
  58. Minshew, N. J., Furman, J. M., Goldstein, G., & Payton, J. B. (1990). The cerebellum in autism: A central role or an epiphenomenon? Neurology, 40(1), 173.Google Scholar
  59. Minshew, N. J., Goldstein, G., & Payton, J. B. (1989). Abstraction and memory deficits in non-retarded autistics: A fundamental deficit? Neurology, 39(1), 136.Google Scholar
  60. Minshew, N. J., & Payton, J. B. (1988a). New perspectives in autism, part I: The clinical spectrum of autism. Current Problems in Pediatrics, 18, 563–610.Google Scholar
  61. Minshew, N. J., & Payton, J. B. (1988b). New perspectives in autism, part 2: The differential diagnosis and neurobiology of autism. Current Problems in Pediatrics, 19, 615–694.Google Scholar
  62. Minshew, N. J., Payton, J. B., & Sclabassi, R. J. (1986). Cortical neurophysiologic abnormalities in autism. Neurology, 36(1), 194–195.Google Scholar
  63. Minshew, N. J., Pettegrew, J. W., Panchalingam, K., Payton, J. B., Kaplan, D., & Wolf, G. (1989). Metabolic alterations in the dorsal prefrontal cortex of normal IQ autistics. Presented at the Society of Magntic Resonance in Medicine meeting.Google Scholar
  64. Minshew, N. J., & Rattan, A. I. (1991). The clinical syndrome of autism. In I. Rapin & S. Segalowitz (Eds.), Handbook of Neuropsychology. Amsterdam: Elsevier.Google Scholar
  65. Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.PubMedCrossRefGoogle Scholar
  66. Murakami, J. W., Courchesne, E., Press, G. A., Yeung-Courchesne, R., & Hesselink, J. R. (1989). Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Archives of Neurology, 46, 689–694.PubMedCrossRefGoogle Scholar
  67. Novick, B., Kurtzberg, D., & Vaughan, H. G. (1979). An electrophysiological indication of defective information storage in childhood autism. Psychiatry Research, 1, 101–108.PubMedCrossRefGoogle Scholar
  68. Novick, B., Vaughan, H. G., Kurtzberg, D., & Simson, R. (1980). An electrophysiologic indication of auditory processing deficits in autism. Psychiatry Research, 3, 107–114.PubMedCrossRefGoogle Scholar
  69. Ornitz, E. M. (1974). The modulation of sensory input and motor output in autistic children. Journal of Autism and Childhood Schizophrenia, 4, 197–215.PubMedCrossRefGoogle Scholar
  70. Ornitz, E. M. (1978). Neurophysiologic studies. In M. Rutter & E. Schopler (Eds.), Autism: A reappraisal of concepts and treatment. New York: Plenum.Google Scholar
  71. Ornitz, E. M. (1985). Neurophysiology of infantile autism. Journal of the American Academy of Child Psychiatry, 24(3), 251–262.PubMedCrossRefGoogle Scholar
  72. Ornitz, E. M. (1989). Autism at the interface between sensory and information processing. In G. dawson (Ed.), Autism: Nature, diagnosis and treatment. New York: Guilford.Google Scholar
  73. Ornitz, E. M., Mo, A., Olson, S. T., & Walter, D. O. (1980). Influence of click sound pressure direction on brainstem responses in children. Audiology, 19, 245–254.PubMedCrossRefGoogle Scholar
  74. Ornitz, E. M., & Ritvo, E. R. (1968). Perceptual inconstancy in early infantile autism. Archives of General Psychiatry, 18, 76–98.PubMedCrossRefGoogle Scholar
  75. Ornitz, E. M., & Walter, D. O. (1975). The effect of sound pressure waveform on human brainstem auditory evoked responses. Brain Research, 92, 490–498.PubMedCrossRefGoogle Scholar
  76. Pettegrew, J. W., Keshavan, M., & Panchalingam, K. (1989). 31P NMR studies in schizophrenia. Biological Psychiatry, 25(1), 15.CrossRefGoogle Scholar
  77. Piggott, L., Purcell, G., Cummings, G., & Caldwell, D. (1976). Vestibular dysfunction in emotionally disturbed children. Biological Psychiatry, 11, 719–729.PubMedGoogle Scholar
  78. Pollack, M., & Krieger, H. P. (1958). Oculomotor and postural patterns in schizophrenic children. Archives of Neurology and Psychiatry, 79, 720–726.PubMedCrossRefGoogle Scholar
  79. Press, G. A., Amaral, D. G., & Squire, L. R. (1989). Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature, 341(6231), 54–57.PubMedCrossRefGoogle Scholar
  80. Raymond, G., Bauman, M., & Kemper, T. (1989). The hippocampus in autism: Golgi analysis. Annals of Neurology, 26(3), 483–484.Google Scholar
  81. Ritvo, E. R., & Garber, H. J. (1988). Cerebellar hypoplasia and autism. New England Journal of Medicine, 319(11), 1152–1154.Google Scholar
  82. Ritvo, E. R., Ornitz, E. M., Eviatar, A., Markham, C. H., Brown, M. B., & Mason, A. (1969). Decreased postrotatory nystagmus in early infantile autism. Neurology, 19, 653–658.PubMedCrossRefGoogle Scholar
  83. Rosenblum, S. M., Arick, J. R., Krug, D. A., Stubbs, E. G., Young, N. B., & Pelson, R. O. (1980). Auditory brainstem evoked responses in autistic children. Journal of Autism and Developmental Disorders, 10, 215–225.PubMedCrossRefGoogle Scholar
  84. Rumsey, J. M. (1985). Conceptual problem-solving in highly verbal nonretarded autistic men. Journal of Autism and Developmental Disorders, 15, 23–36.PubMedCrossRefGoogle Scholar
  85. Rumsey, J. M., Duara, R., Grady, C., Rapoport, J. L., Margolin, R. A., Rapoport, S. I., & Cutler, N. R. (1985). Brain metabolism in autism. Archives of General Psychiatry, 42, 448–455.PubMedCrossRefGoogle Scholar
  86. Rumsey, J. M., Grimes, A. M., Pikus, A. M., Duara, R., & Ismond, D. (1984). Auditory brainstem responses in pervasive developmental disorders. Biological Psychiatry, 19, 1403–1417.PubMedGoogle Scholar
  87. Rumsey, J. M., & Hamburger, S. D. (1988). Neuropsychological findings in high-functioning men with infantile autism, residual state. Journal of Clinical and Experimental Neuropsychology, 10, 201–221.PubMedCrossRefGoogle Scholar
  88. Rutter, M. (1988). Biological bases of autism: Implications for intervention. In F. J. Menolascino & J. A. Stark (Eds.), Preventive and curative intervention in mental retardation. New York: Paul H. Brooks.Google Scholar
  89. Schaefer, G. B., Thompson, J. N., Bodensteiner, J. B., Gingold, M., Wilson, M., & Wilson, D. (1991). Age related changes in the relative growth of the posterior fossa. Journal of Child Neurology, 6, 15.PubMedCrossRefGoogle Scholar
  90. Schaefer, G. B., Thompson, J. N., Bodensteiner, J. B., Hamza, M., Tucker, R., Marks, W. A., Gay, C. T., and Wilson, D. (1990). Quantitative morphometric analysis of brain growth utilizing quantitative analysis of magnetic resonance imaging. Journal of Child Neurology, 5, 127.PubMedCrossRefGoogle Scholar
  91. Skoff, B. F., Mirsky, A. F., & Tumer, D. (1980). Prolonged brainstem transmission time in autism. Psychiatry Research, 2, 157–166.PubMedCrossRefGoogle Scholar
  92. Student, M., & Sohmer, H. (1978). Evidence from auditory nerve and brainstem evoked responses for an organic brain lesion in children with autistic traits. Journal of Autism and Child Schizophrenia, 8, 13–20.CrossRefGoogle Scholar
  93. Student, M., & Sohmer, H. (1979). Erratum. Journal of Autism and Developmental Disorders, 9(3), 309.CrossRefGoogle Scholar
  94. Tanguay, P. E., & Edwards, M. R. (1982). Electrophysiological studies of autism: The whisper of the bang. Journal of Autism and Developmental Disorders, 12, 177–184.PubMedCrossRefGoogle Scholar
  95. Tanguay, P. E., Edwards, R. M., Buchwald, J., Schwafel, J., & Allen, V. (1982). Auditory brain stem evoked responses in autistic children. Archives of General Psychiatry, 38, 174–180.CrossRefGoogle Scholar
  96. Taylor, M. J., Rosenblatt, B., & Linschoten, L. (1982). Auditory brainstem response abnormalities in autistic children. Journal of Canadian Science and Neurology, 9, 429–434.Google Scholar
  97. Thompson, R. F. (1983). Neuronal substrates of simple associative learning: Classical conditioning. Trends in Neuroscience, 6, 270–275.CrossRefGoogle Scholar
  98. Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 223, 941–947.CrossRefGoogle Scholar
  99. Wing, L. (1976). Diagnosis, clinical descriptions, and prognosis. In L. Wing (Ed.), Early childhood autism: Clinical, educational, and social aspects (2nd ed.). Oxford: Pergamon.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Nancy J. Minshew
    • 1
  1. 1.Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations