Skip to main content

Pharmacokinetics of Heparin and of Dermatan Sulfate: Clinical Implications

  • Chapter
Heparin and Related Polysaccharides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 313))

Abstract

The pharmacokinetic data concerning heparin and dermatan sulfate are usually based upon the disappearance of the biological activities generated after parenteral administration, and not upon the direct determination of their chemical concentrations. At least for heparin, these biological activities are mainly related to the polysaccharide chain length and to the antithrombin III affinity, two factors which largely influence heparin clearance. A good understanding of the pharmacokinetic properties of these glycosaminoglycans needs several complementary approaches which may provide conflicting results reflecting the functional and structural heterogeneity of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dawes, and D. S. Pepper. Catabolism of low-dose heparin in man. Thromb Res. 14:845 (1979).

    Article  PubMed  CAS  Google Scholar 

  2. T. H. Oh, S. S. Naidoo, and L. B. Jaques. The uptake and disposition of 35S-heparin by macrophages in vitro. J Reticuloendothel Soc. 13:134 (1973).

    CAS  Google Scholar 

  3. J. Mahadoo, L. Hiebert, and L. B. Jaques. Vascular sequestration of heparin. Thromb Res. 12:79 (1977).

    Article  Google Scholar 

  4. M. Palm, and C. Matsson. Pharmacokinetics of heparin and low molecular weight heparin fragment (Fragminr) in rabbits with impaired renal or metabolic clearance. Thromb Haemost. 58:932 (1987a).

    PubMed  CAS  Google Scholar 

  5. B. Glimelius, C. Busch, and M. Hook. Binding of heparin on the surface of cultured human endothelial cells. Thromb Res. 12:773 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. T. Barzu, P. Molho, G. Tobelem, M. Petitou, and J. Caen. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 945:196 (1985).

    Article  Google Scholar 

  7. T. Barzu, J. L. M. L. Van Rijn, M. Petitou, P. Molho, G. Tobelem, and J.P. Caen. Endothelial binding sites for heparin; specificity and role in heparin neutralization. Biochem J. 238:847 (1986).

    PubMed  CAS  Google Scholar 

  8. T. Barzu, J. L. M. L. Van Rijn, M. Petitou, and J.P. Caen. Heparin degradation in the endothelial cell. Thromb Res. 47:601 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. J. Pipper. The fate of heparin in rabbits after intravenous injection. Filtration and tubular secretion in the kidneys. Acta Pharmacol. 3:373 (1947).

    Article  Google Scholar 

  10. P. Olsson, H. Lagergren, and S. Ek. The elimination from plasma of intravenous heparin. An experimental study on dogs and humans. Acta Med Scand. 173:619 (1963).

    Article  PubMed  CAS  Google Scholar 

  11. T. D. Bjornsson, K. M. Wolfram, and B. Kitchell. Heparin kinetics determined by three assay methods. Clin Pharmacol Then 31:104 (1982).

    Article  CAS  Google Scholar 

  12. B. Boneu, M. R. Buchanan, C. Caranobe, A. M. Gabaig, D. Dupouy, P. Sié, and J. Hirsh. Evidence for a saturable mechanism of disappearance of standard heparin in rabbits. Thromb Res. 46:835 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. C. A.M. De Swart, B. Nijmeyer, J. M. M. Roelofs, and J. J. Sixma. Kinetics of intravenously administered heparin in normal humans. Blood. 60:1251 (1982).

    PubMed  Google Scholar 

  14. L. Briant, C. Caranobe, S. Saivin, P. Sié, B. Bayrou, G. Houin, and B. Boneu. Unfractionated heparin and CY 216: pharmacokinetics and bioavailabilities of the antifactor Xa and lla effects after intravenous and subcutaneous injection in the rabbit. Thromb Haemost. 61:348 (1989).

    PubMed  CAS  Google Scholar 

  15. C. Caranobe, A. Barret, A. M. Gabaig, D. Dupouy, P. Sié, and B. Boneu. Disappearance of circulating anti-Xa activity after intravenous injection of standard heparin and of a low molecular weight heparin (CY 216) in normal and nephrectomized rabbits. Thromb Res. 40:129 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. B. Boneu, M. R. Buchanan, C. Caranobe, A. M. Gabaig, D. Dupouy, P. Sié, and J. Hirsh. The disappearance of a low molecular weight heparin fraction (CY 216) differs from standard heparin in rabbits. Thromb Res. 46:845(1987).

    Article  PubMed  CAS  Google Scholar 

  17. A.M. Frydman, L Bara, Y. Le Roux, M. Woler, F. Chauliac, and M. Samama. The antithrombotic activity and pharmacokinetics of enoxaparine, a low molecular weight heparin, in humans given single subcutaneous doses of 20 to 80 mg. J Clin Pharmacol. 28:609 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. J. Dawes, L Bara, E. Billaud, and M. Samama. Relationship between biological activity and concentration of a low molecular weight heparin (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Haemostas. 16:116 (1986).

    CAS  Google Scholar 

  19. C. Goudable, H. Ton That, A. Damani, D. Durand, C. Caranobe, P. Sié, and B. Boneu. Low molecular weight heparin half life is prolonged in hemodialysed patients. Thromb Res. 43:1 (1986).

    Google Scholar 

  20. Y. Cadroy, J. Pourrat, M.F. Baladre, S. Saivin, G. Houin, J.L. Montastruc, I. Vernier, and B. Boneu. Delayed elimination of enoxaparine in patients with chronic renal insufficiency. Thromb Res. 63:385 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. C. Goudable, S. Saivin, G. Houin, P. Sié, B. Boneu, H. Tonthat, and J.M. Suc. Pharmacokinetics of a low molecular weight heparin (fraxipariner) in various stages of chronic renal failure. Nephron. 1991 (In press).

    Google Scholar 

  22. T. Matzsch, D. Bergqvist, U. Hedner, and P. Ostergaard. Effects of an enzymatically depolymerized heparin as compared with conventional heparin in healthy volunteers. Thromb Haemost. 57:97 (1987).

    PubMed  CAS  Google Scholar 

  23. C. Caranobe, M. Petitou, D. Dupouy, A.M. Gabaig, P. Sié, M. R. Buchanan, and B. Boneu. Heparin fractions with high and low affinities to antithrombin III are cleared at different rates. Thromb Res. 43:635 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. M. Palm, and C. Matsson. Pharmacokinetics of fragmin. A comparative study in the rabbit of its high and low affinity to antithrombin. Thromb Res. 48:51 (1987b).

    Article  PubMed  CAS  Google Scholar 

  25. G. Vogel, T. Von Dinther, A. Visser, M. T. Buiting, R. Von Amsterdan, and D. Meuleman. Significance of the AT III binding affinity of some pentasaccharide analogues for their anti-Xa activities and elimination rates in rats. Thromb Haemost. 65:930 (1991).

    Google Scholar 

  26. M. Hoylaerts, E. Holmer, M. De Mol, and D. Collen. Covalent compjexes between low molecular weight heparin fragments and antithrombin III. Inhibition kinetics and turnover parameters. Thromb Haemost. 49:109 (1983).

    PubMed  CAS  Google Scholar 

  27. C. Mattson, M. Hoylaerts, E. Holmer, T. Uthne, and D. Collen. Antithrombotic properties in rabbits of heparin and heparin fragments covalently coupled to human antithrombin III. J Clin Invest. 75:1169 (1985).

    Article  Google Scholar 

  28. S. Saivin, M. Petitou, J.C. Lormeau, D. Dupouy, P. Sié, C. Caranobe, G. Houin, and B. Boneu. Pharmacological properties of unfractionated heparin derivative with long lasting effects. J Lab clin Med. 1991 (In press).

    Google Scholar 

  29. S. Saivin, M. Petitou, J.C. Lormeau, D. Dupouy, P. Sié, C. Caranobe, G. Houin, and B. Boneu. Pharmacological properties of a low molecular weight heparin derivative with long lasting effects. Thromb Haemost 1991 (In press).

    Google Scholar 

  30. S. Saivin, C. Caranobe, M. Petitou, J.C. Lormeau, G. Houin, and B. Boneu. Pharmacodynamic properties of long lasting butyryl heparin derivatives in the rabbits. Thromb Haemost. 1991 (submitted).

    Google Scholar 

  31. R. J. Cipolle, R. D. Siefert, B. A. Neilan, D. E. Zaske, and E. Haus. Heparin kinetics: variables related to disposition and dosage. Clin Pharmacol Ther., 29:387 (1981).

    Article  PubMed  CAS  Google Scholar 

  32. J. W. Estes. The heterogeneity of the anticoagulant response to heparin. J Clin Path, 25:45 (1972).

    Article  PubMed  CAS  Google Scholar 

  33. J. Hirsh, W. G. Van Aken, A. S. Gallus, C. T. Dollery, J. F. Cade, and W. L. Yung. Heparin kinetics in venous thrombosis and pulmonary embolism. Circulation. 53:691 (1976).

    Article  PubMed  CAS  Google Scholar 

  34. S. Benchekroun, B. Eychenne, O. Mericq, A. Colombani, P. Douste-Blazy, A. Barret, P. Sié, and B. Boneu. Heparin half-life and sensitivity in normal subjects and in patients affected by deep vein thrombosis. Eur J Clin Invest. 16:536 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. T. M. White, J. L. Bernene, and A. M. Marino. Continuous heparin infusion requirements. Diagnostic and therapeutic implication. JAMA. 241: 2717 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. B. L. Beavers, D. Young, and B. Satiani. Prediction of heparin requirements in acute thromboplastic venous disease. Arch Surg. 120:436 (1985).

    Article  Google Scholar 

  37. T. L. Simon, T. M. Hyers, J. P. Gaston, and L. A. Harker. Heparin pharmacokinetics: increased requirements in pulmonary embolism. Br J Haematol. 39:111 (1978).

    Article  PubMed  CAS  Google Scholar 

  38. C. G. Elliott, R. J. Michocki, R. Brown, and O. E. Ottesen. Heparin requirements in pulmonary embolism and venous thrombosis: a prospective study. J Clin Pharmacol. 22:102 (1982).

    Article  PubMed  CAS  Google Scholar 

  39. H. A. Decousus, M. Croze, F. A. Levi, J. G. Jaubert, B. M. Perpoint, J. F. De Bonadona, A. Reinberg, and P. M. Queneou. Circadian changes in anticoagulant effect of heparin infused at a constant rate. Brit Med J. 290:341 (1985).

    Article  CAS  Google Scholar 

  40. P. Toulon, J. F. Vitoux, C Leroy, T. Lecomte, M. Roncato, Y. Motobashi, M. Aiach, and J. N. Fiessinger. Circulating activities during constant infusion of heparin or a low molecular weight derivative (Enoxaparine): failure to demonstrateany circadian variations. Thromb Haemost. 58:1068 (1987).

    PubMed  CAS  Google Scholar 

  41. J. Dawes, B. A. Hodson, and D. S. Pepper. The absorption, clearance and metabolic fate of dermatan sulphate administered to man-studies using a radioiodinated derivative. Thromb Haemost. 62:945 (1989).

    PubMed  CAS  Google Scholar 

  42. F. Dol, G. Houin, D. Dupouy, Y. Cadroy, C. Caranobe, A.M. Gabaig, J. Mardiguian, P. Sié, and B. Boneu. Pharmacokinetics of dermatan sulfate in the rabbit after intravenous injection. Thromb Haemost, 59:255 (1988).

    PubMed  CAS  Google Scholar 

  43. F. Dol, G. Houin, M. Rostin, J.L. Montastruc, D. Dupouy, F. Gianese, P. Sié, and B. Boneu. Pharmacodynamics and pharmacokinetics of dermatan sulfate in humans. Blood. 74:1577 (1989).

    PubMed  CAS  Google Scholar 

  44. F. Dol, C. Caranobe, D. Dupouy, M. Petitou, J.C. Lormeau, J. Choay, P. Sié, and B. Boneu. Effects of increased sulfation of dermatan sulfate on its in vitro and in vivo pharmacological properties. Thromb Res, 52:153 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. J. L M. L Van Rijn, M. Trillou, J. Mardiguian, G. Tobelem, and J. Caen. Selective binding of heparins to human endothelial cells. Implications for pharmacokinetics. Thromb Res. 45:211 (1987).

    Article  PubMed  Google Scholar 

  46. J. Van Ryn-McKenna, F. A. Ofosu, J. Hirsh, and M. R. Buchanan. The antithrombotic and bleeding effects of glycosaminoglycans with different degrees of sulfation. Br J Haematol, 71:265 (1989).

    Article  PubMed  Google Scholar 

  47. P. Sié, D. Dupouy, C. Caranobe, B. Boneu, and M. Petitou. Antithrombotic properties of a dermatan sulfate hexadecasaccharide fractionated by affinity for heparin cofactor II. 1991 (submitted).

    Google Scholar 

  48. F. Dol, M. Petitou, J.C. Lormeau, J. Choay, C. Caranobe, P. Sié, S. Saivin, G. Houin, and B. Boneu. Pharmacologic properties of a low molecular weight dermatan sulfate: comparison with unfractionated dermatan sulfate. J Lab Clin Med. 115:43 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boneu, B., Caranobe, C., Saivin, S., Dol, F., Sié, P. (1992). Pharmacokinetics of Heparin and of Dermatan Sulfate: Clinical Implications. In: Lane, D.A., Björk, I., Lindahl, U. (eds) Heparin and Related Polysaccharides. Advances in Experimental Medicine and Biology, vol 313. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2444-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2444-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2446-9

  • Online ISBN: 978-1-4899-2444-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics