Skip to main content

Role of Protein Conformational Changes, Surface Approximation and Protein Cofactors in Heparin-Accelerated Antithrombin-Proteinase Reactions

  • Chapter
Heparin and Related Polysaccharides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 313))

Abstract

Antithrombin functions as the principal plasma protein inhibitor of most blood coagulation proteinases.1,2 The essential role of this inhibitor in regulating the activity of these proteinases in vivo is indicated from the well-established link between inherited or acquired deficiencies of antithrombin and the tendency to develop thrombotic disease. Antithrombin is a member of the serpin superfamily of protein proteinase inhibitors and its main target enzymes include the blood coagulation factors IXa, Xa and thrombin. This and other serpins are distinguished from other family members in that their reactions with target enzymes are greatly accelerated by the binding of heparin or heparan sulfate glycosaminoglycans. This property is chiefly responsible for the anticoagulant activity of heparin and has suggested a role for endogenous heparin and heparan sulfate in the regulation of blood coagulation proteinases by antithrombin. In this article, we will review our present understanding of the relationship between antithrombin structure and function based on currently available evidence. Our discussion will focus principally on two areas: 1) the mechanism by which antithrombin and other serpins inhibit their target proteinases; and 2) the molecular basis of heparin’s accelerating effect on antithrombin-proteinase reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Björk, S. T. Olson, and J. D. Shore, Molecular mechanisms of the accelerating effect of heparin on the reactions between antithrombin and clotting proteinases, in: “Heparin. Chemical and Biological Properties. Clinical Applications”, D. A. Lane and U. Lindahl, eds., Edward Arnold, London (1989).

    Google Scholar 

  2. S. T. Olson and I. Björk, Regulation of thrombin by antithrombin and heparin cofactor II, in: “Thrombin: Structure and function”, L. J. Berliner, ed., Plenum, New York City (1991).

    Google Scholar 

  3. I. Björk and W. W. Fish, Production in vitro and properties of a modified form of bovine antithrombin, cleaved at the active site by thrombin, J. Biol. Chem. 257:9487 (1982).

    PubMed  Google Scholar 

  4. S. T. Olson, Heparin and ionic strength-dependent conversion of antithrombin III from an inhibitor to a substrate of a-thrombin, J. Biol. Chem. 260:10153 (1985).

    PubMed  CAS  Google Scholar 

  5. H. Erdjument, D. A. Lane, M. Panico, V. DiMarzo, and H. R. Morris, Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J. Biol. Chem. 263:5589 (1988).

    PubMed  CAS  Google Scholar 

  6. M. C. Owen, C. H. Beresford, and R. W. Carrell, Antithrombin Glasgow, 393 Arg to His: a P1 reactive site variant with increased heparin affinity but no thrombin inhibitory activity, FEBS Lett. 231:317 (1988).

    Google Scholar 

  7. D. A. Lane, H. Erdjument, A. Flynn, V. DiMarzo, M. Panico, H. R. Morris, M. Greaves, G. Dolan, and F. E. Preston, Antithrombin Sheffield: amino acid substitution at the reactive site (Arg 393 to His) causing thrombosis, Brit. J. Haematol. 71:91 (1989).

    Article  CAS  Google Scholar 

  8. H. Erdjument, D. A. Lane, M. Panico, V. DiMarzo, H. R. Morris, K. Bauer, and R. D. Rosenberg, Antithrombin Chicago, amino acid substitution of arginine 393 to histidine, Thromb. Res. 54:613 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. H. Erdjument, D. A. Lane, H. Ireland, V. DiMarzo, M. Panico, H. R. Morris, A. Tripodi, and P. M. Manucci, Antithrombin Milano, single amino acid substitution at the reactive site, Arg 393 to Cys, Thromb. Hemostas. 60:471 (1988).

    CAS  Google Scholar 

  10. D. A. Lane, H. Erdjument, E. Thompson, M. Panico, V. DiMarzo, H. R. Morris, G. Leone, V. DeStefano, and S. L. Thein, A novel amino acid substitution in the reactive site of a congenital variant antithrombin. Antithrombin Pescara, Arg393 to Pro, caused by a CGT to CCT mutation, J. Biol. Chem. 264: 10200 (1989).

    PubMed  CAS  Google Scholar 

  11. A. W. Stephens, B. S. Thalley, and C. H. W. Hirs, Antithrombin Ill-Denver, a reactive site variant, J. Biol. Chem. 262:1044 (1987).

    PubMed  CAS  Google Scholar 

  12. A. W. Stephens, A. Siddiqui, and C. H. W. Hirs, Site-directed mutagenesis of the reactive center (serine 394) of antithrombin III, J. Biol. Chem. 263:15849 (1988).

    PubMed  CAS  Google Scholar 

  13. S. T. Olson, R. Sheffer, A. W. Stephens, and C. H. W. Hirs, Molecular basis of the reduced reactivity of antithrombin-Denver with thrombin and factor Xa. Role of the P1’ residue, Thromb. Haemostas. 65:670 (1991).

    Google Scholar 

  14. S. C. Bock, Antithrombin III genetics, structure and function, in: “Recombinant Technology in Hemostasis and Thrombosis”, L. W. Hoyer and W. N. Drohan, eds., Plenum, New York City (1990).

    Google Scholar 

  15. P. Molho-Sabatier, M. Aiach, I. Gaillaird, J. N. Fiessinger, A. M. Fischer, G. Chadeuf, and E. Clause, Molecular characterization of antithrombin III (AT III) variants using polymerase chain reaction. Identification of the AT III Charleville as an Ala 384 →Pro mutation, J. Clin. Invest. 84:1236 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. R. Caso, D. A. Lane, E. A. Thompson, R. J. Olds, S. L. Thein, M. Paqnico, I. Blench, H. R. Morris, J. M. Freyssinet, M. Aiach, F. Rodeghiero, and G. Finazzi, Antithrombin Vicenza, Ala 384 to Pro (GCA to CCA) mutation, transforming the inhibitor into a substrate, Brit. J. Haematol. 77:87 (1991).

    Article  CAS  Google Scholar 

  17. R. Devraj-Kizuk, D. H. K. Chui, E. V. Prochownik, C. J. Carter, F. A. Ofosu, M. A. Blajchman, Antithrombin-III-Hamilton: A gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity, Blood 72:1518 (1988).

    PubMed  CAS  Google Scholar 

  18. N. J. Levy, N. Ramesh, M. Cicardi, R. A. Harrison, A. E. Davis, Type II hereditary angioneurotic edema that may result from a single nucleotide change in the codon for alanine-436 in the Cl inhibitor gene, Proc. Natl. Acad. Sci. U.S.A. 87:265 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. K. Skriver, W. R. Wikoff, P. A. Patston, F. Tausk, M. Schapira, A. P. Kaplan, and S. C. Bock, Substrate properties of C1 Inhibitor Ma (alaninie 434→glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor inhibitor/substrate status, J. Biol. Chem. 266:9216 (1991).

    PubMed  CAS  Google Scholar 

  20. W. E. Holmes, H. R. Lijnen, L. Nelles, C. Kluft, H. K. Nieuwenhuis, D. C. Rijken, and D. Collen, α2-antiplasmin Enschede: alanine insertion and abolition of plasmin inhibitory activity, Science 238:209 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. S. Asakura, H. Hirata, H. Okazaki, T. Hashimoto-Gotoh, and M. Matsuda, Hydrophobic residues 382–386 of antithrombin III, ala-ala-ala-ser-thr, serve as an epitope for an antibody which facilitates hydrolysis of the inhibitor by thrombin, J. Biol. Chem. 265:5135 (1990).

    PubMed  CAS  Google Scholar 

  22. R. Huber and R. W. Carrell, Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins, Biochemistry 28:8951 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. L. Mourey, J. P. Samama, M. Delarue, J. Choay, J. C. Lormeau, M. Petitou, and D. Moras, Antithrombin III: structural and functional aspects, Biochimie 72:599 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. R. A. Engh, H. T. Wright, and R. Huber, Modeling of the intact form of the α1-proteinase inhibitor, Protein Engng. 3:469 (1990).

    Article  CAS  Google Scholar 

  25. P. E. Stein, A. G. W. Leslie, J. T. Finch, W. G. Turnell, P. J. McLaughlin, and R. W. Carrell, Crystal structure of ovalbumin as a model for the reactive centre of serpins, Nature 347:99 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. A. J. Schulze, U. Baumann, S. Knof, E. Jaeger, R. Huber, and C.-B. Laurell, Structural transition of α1-antitrypsin by a peptide sequentially similar to β-strand s4A, Eur. J. Biochem. 194:51 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. I. Björk, K. Ylinenjarvi, S. T. Olson, and P. E. Bock, Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive-bond loop of the inhibitor, J. Biol. Chem. in press (1991).

    Google Scholar 

  28. S. O. Brennan, J. Y. Borg, P. M. George, C. Soria, J. Soria, J. Caen, and R. W. Carrell, New carbohydrate site in mutant antithrombin (7 Ile→ Asn) with decreased heparin affinity, FEBS Lett. 237:118 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. J. Y. Borg, S. O. Brennan, R. W. Carrell, P. George, D. J. Perry, and J. Shaw, Antithrombin Rouen-IV, 24 Arg→Cys. The amino terminal contribution to heparin binding, FEBS Lett. 266:163 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. S. Gandrille, M. Aiach, D. A. Lane, D. Vidaud, P. Molho-Sabatier, R. Caso, P. deMoerloose, J. N. Fiessinger, and E. Clauser, Crucial role of Arg 129 in heparin binding site of antithrombin III: Identification of a novel mutation Arg 129 to Gln, J. Biol. Chem. 265:18997(1990).

    PubMed  CAS  Google Scholar 

  31. P. Gettins and E. W. Wooten, On the domain structure of antithrombin III. Localization of the heparin-binding region using 1H NMR spectroscopy, Biochemistry 26:4403 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. J. Y. Chang, Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236. Lys-107, lys-125, and lys-136 are situated within the heparin-binding site of antithrombin III, J. Biol. Chem. 264:3111 (1989).

    PubMed  CAS  Google Scholar 

  33. X. J. Sun and J. Y. Chang, Evidence that arginine-129 and arginine-145 are located within the heparin binding site of human antithrombin III, Biochemistry 29:8957 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. X. J. Sun and J. Y. Chang, Heparin binding domain of human antithrombin III inferred from the sequential reduction of its three disulfide linkages. An efficient method for structural analysis of partially reduced proteins, J. Biol. Chem. 264:11288 (1989).

    PubMed  CAS  Google Scholar 

  35. J. W. Smith, N. Dey, and D. J. Knauer, Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody, Biochemistry 29:8950 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. S. T. Olson, I. Björk, P. A. Craig, J. D. Shore, and J. Choay, Role of the high-affinity pentasaccharide in heparin acceleration of antithrombin III inhibition of thrombin and factor Xa, Thromb. Haemostas. 58:8 (1987).

    Google Scholar 

  37. R. D. Rosenberg and P. S. Damus, The purification and mechanism of action of human antithrombin-heparin cofactor, J. Biol. Chem. 248:6490 (1973).

    PubMed  CAS  Google Scholar 

  38. C. H. Beresford and M. C. Owen, Minireview. Antithrombin III, Int. J. Biochem. 22:121 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. S. T. Olson and I. Björk, Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects, J. Biol. Chem. 266:6353 (1991).

    PubMed  CAS  Google Scholar 

  40. S. T. Olson, High molecular weight-kininogen enhancement of the heparin-accelerated rate of plasma kallikrein inactivation by antithrombin III, J. Cell Biol. 107:827a (1989).

    Google Scholar 

  41. S. T. Olson and J. D. Shore, High molecular weight-kininogen and heparin acceleration of factor XIa inactivation by plasma proteinase inhibitors, Thromb. Haemostas. 62:381 (1989).

    Google Scholar 

  42. I. Björk, S. T. Olson, R. G. Sheffer, and J. D. Shore, Binding of heparin to human high molecular weight kininogen, Biochemistry 28:1213 (1989).

    Article  PubMed  Google Scholar 

  43. S. T. Olson and J. Choay, Mechanism of high molecular weight-kininogen stimulation of the heparin-accelerated antithrombin/kallikrein reaction, Thromb. Haemostas. 62:326 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olson, S.T., Björk, I. (1992). Role of Protein Conformational Changes, Surface Approximation and Protein Cofactors in Heparin-Accelerated Antithrombin-Proteinase Reactions. In: Lane, D.A., Björk, I., Lindahl, U. (eds) Heparin and Related Polysaccharides. Advances in Experimental Medicine and Biology, vol 313. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2444-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2444-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2446-9

  • Online ISBN: 978-1-4899-2444-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics