Skip to main content

Multiphoton Ionization

  • Chapter
  • 224 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The problem dealt with in this chapter concerns an atom, initially in its ground state, which is exposed to a laser for some time and then emerges in a continuum state. Since the atom is initially and finally outside the field, there is no difficulty in defining the states between which the transition occurs. Moreover, in light of the discussion in Chapter 2 we shall consider mainly the adiabatic switching of the laser (Sections 7.9 and 7.11 are exceptions).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. A. Szōke, fsjskd in Atomic and Molecular Processes with Short Intense Laser Pulses (A. D. Baudrank, ed.), Plenum Press, New York (1985).

    Google Scholar 

  2. J. H. Eberly, J. Javinainan, and K. Rzazewski, Phys. Rep. 204, 331 (1991).

    Article  CAS  Google Scholar 

  3. I. J. Bersons, J. Phys. B 9, 3078 (1975).

    Article  Google Scholar 

  4. D. Jackson, Classical Electrodynamics, Wiley, New York (1967).

    Google Scholar 

  5. The treatment in this section follows that of B. Beers and L. Armstrong, Phys. Rev. A 12, 2447 (1975), except that phenomenological operators introduced there are derived here and we treat the laser switching adiabatically rather than suddenly.

    Article  CAS  Google Scholar 

  6. M. L. Goldberger and K. M. Watson, Collision Theory, 2nd ed., Kreiger, New York (1973). See the section “Decay of a Prepared State.”

    Google Scholar 

  7. Note that the adiabatic treatment results in (7.2.44) or (7.2.45) which always yields a definite value for the transition rate. This differs from the results of Ref. 5 and of A. E. Kuzakiv, V. P. Makarov, and M. V. Federov, Sov. Phys. JETP 43, 20 (1976), where a sudden approximation is used and where transition rates are not always definable.

    Google Scholar 

  8. See, for example, P. Lambropoulos, Phys. Rev. 168, 1418 (1968)

    Article  Google Scholar 

  9. S. L. Chin, Phys. Rev. A 5, 2303 (1972)

    Article  Google Scholar 

  10. J. L. F. de Meijere and J. H. Eberly, Phys. Rev. A 17, 1416 (1978)

    Article  Google Scholar 

  11. L. Armstrong, P. Lambropoulos, and N. K. Rahman, Phys. Rev. Lett. 36, 952 (1976).

    Article  Google Scholar 

  12. P. Lambropoulos, G. Doolen, and S. Rountree, Phys. Rev. Lett. 34, 636 (1975).

    Article  CAS  Google Scholar 

  13. See G. Nienhuis, E. H. A. Granneman, and M. J. van der Wiel, J. Phys. B 11, 1203 (1978), and references therein.

    Article  CAS  Google Scholar 

  14. See, for example, M. M. Lambropoulos, and R. S. Berry, Phys. Rev. A 8, 855 (1973).

    Article  CAS  Google Scholar 

  15. M. Klewer, M. J. M. Beerlage, E. H. A. Granneman, and M. J. van der Wiel, J. Phys. B 10, L243 (1977).

    Article  Google Scholar 

  16. M. R. Teague, P. Lambropoulos, D. Goodmanson, and D. W. Norcross, Phys. Rev. A 14, 1057 (1976).

    Article  CAS  Google Scholar 

  17. J. Morellec, D. Normand, G. Mainfray, and C. Marcus, Phys. Rev. Lett. 44, 1394 (1980).

    Article  CAS  Google Scholar 

  18. See C. S. Chang and P. Stehle, Phys. Rev. Lett. 30, 1283 (1973), and references therein.

    Article  CAS  Google Scholar 

  19. B. Held, G. Mainfray, C. Manus, J. Morellec, and F. Sanchez, Phys. Rev. Lett. 30, 423 (1973).

    Article  Google Scholar 

  20. L. A. Lompre, G. Mainfray, C. Manus, and J. Thebault, J. Phys. (Paris) 39, 610 (1978).

    Article  CAS  Google Scholar 

  21. R. N. Compton, J. C. Miller, A. E. Carter, and P. Kruit, Chem. Phys. Lett. 71, 87 (1980). Also see J. C. Miller, R. N. Compton, M. G. Payne, and W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980).

    Article  CAS  Google Scholar 

  22. M. G. Payne and W. R. Garrett, Phys. Rev. A 26, 356 (1982).

    Article  CAS  Google Scholar 

  23. S. N. Dixit and P. Lambropoulos, Phys. Rev. Lett. 46, 1278 (1981).

    Article  CAS  Google Scholar 

  24. E. Fiordilino and M. H. Mittleman, Phys. Rev. A 28, 229 (1983).

    Article  CAS  Google Scholar 

  25. J. C. Y. Chen and A. C. Chen, Adv. At. Mol. Phys. 8, 71 (1972).

    Article  CAS  Google Scholar 

  26. See, for example, L. I. Schiff, Quantum Mechanics (3rd Ed.), McGraw-Hill, New York, p. 420 (1968).

    Google Scholar 

  27. P. Kruit, J. Kimman, H. G. Muller, and M. J. van der Wiel, J. Phys. B 14, L597 (1981); Phys. Rev. A 28, 248 (1983).

    Article  Google Scholar 

  28. P. Agostini, F. Fabre, G. Mainfrey, G. Petite, and N. K. Rahman, Phys. Rev. Lett. 42, 1127 (1979).

    Article  CAS  Google Scholar 

  29. H. G. Muller, A. Tip, and M. J. van der Wiel, J. Phys. B 16, L679 (1983).

    Article  Google Scholar 

  30. H. G. Muller, personal communication.

    Google Scholar 

  31. M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); J. Phys. B 17, L351 (1984). The title of this section is taken from a remark by M. J. van der Wiel and seems to be appropriate enough to “stick.”

    Article  CAS  Google Scholar 

  32. E. Fiordilino and M. H. Mittleman, J. Phys. B 18, 4425 (1985).

    Article  CAS  Google Scholar 

  33. J. H. Shirley, Phys. Rev. 138B, 979 (1975)

    Article  Google Scholar 

  34. S.-I. Chu and W. P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1987)

    Article  Google Scholar 

  35. R. R. Freeman and P. H. Bucksbaum, J. Phys. B 24, 325 (1991).

    Article  CAS  Google Scholar 

  36. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, Phys. Rev. Lett. 59, 1092 (1987).

    Article  CAS  Google Scholar 

  37. E. Arnous, J. Bastian, and A. Maquet, Phys. Rev. A 27, 977 (1981)

    Article  Google Scholar 

  38. and references therein; B. Gao and A. F. Starace, Phys. Rev. A 42, 5580 (1990).

    Article  CAS  Google Scholar 

  39. This point of view has been vigorously supported by J. Kupersztych. Personal communication.

    Google Scholar 

  40. M. C. Baruch, T. F. Gallagher, and D. J. Larson, Phys. Rev. Lett. 65, 1336 (1990).

    Article  CAS  Google Scholar 

  41. P. B. Corkum, N. H. Burnett, and F. Brunei, Phys. Rev. Lett. 62, 1259 (1989).

    Article  CAS  Google Scholar 

  42. D. M. Volkov, Z. Phys. 94, 250 (1935).

    Article  Google Scholar 

  43. L. H. Thomas, Proc. R. Soc. London Ser. A 114, 561 (1927).

    Article  CAS  Google Scholar 

  44. This is a generalization of a time-independent theory of the rearrangement collision T matrix, M. H. Mittleman, Phys. Rev. 122, 1930 (1961).

    Article  Google Scholar 

  45. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  46. F. H. M. Faisal, J. Phys. B 6, L312 (1973).

    Article  Google Scholar 

  47. H. Reiss, Phys. Rev. A 22, 1786 (1980); J. Phys. B 20, L79 (1987).

    Article  CAS  Google Scholar 

  48. These functions were apparently first used in this context by L. S. Brown and T. W. B. Kibble, Phys. Rev. 133A, 705 (1964). Their properties have been investigated extensively in the first of Ref. 41 and by C. Laubner, Phys. Rev. A 23, 2877 (1981).

    Article  Google Scholar 

  49. M. H. Mittleman, Phys. Rev. A 40, 463 (1989).

    Article  CAS  Google Scholar 

  50. L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York (1968).

    Google Scholar 

  51. J. Abranyos and M. H. Mittleman, Phys. Rev. A 42, 4284 (1990).

    Article  CAS  Google Scholar 

  52. M. Dorr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, Phys. Rev. A 42, 4138 (1990).

    Article  CAS  Google Scholar 

  53. R. Shakeshaft, personal communication.

    Google Scholar 

  54. M. Bashkansky, P. H. Bucksbaum, and D. W. Schumacher, Phys. Rev. Lett. 60, 2458 (1988).

    Article  CAS  Google Scholar 

  55. Y. Gontier and T. Trahin, Phys. Rev. A 4, 1896 (1971); E. Karule, J. Phys. B 4, L67 (1971); and P. Lambropoulos, Adv. At. Mol. Phys. 12, 87 (1976).

    Article  Google Scholar 

  56. F. Trombetta, G. Ferrante, and S. Basile, J. Phys. B 21, L539 (1988).

    Article  Google Scholar 

  57. H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriyev, J. Phys. B 23, 2761 (1990).

    Article  CAS  Google Scholar 

  58. This method was first proposed and used for finding the bound states in circular polarization by J. I. Gersten and M. H. Mittleman, J. Phys. B 9, 2561 (1976). It was later used much more extensively and systematically for both linear and circular polarization by Gavrila et al. See Refs. 53–56.

    Article  CAS  Google Scholar 

  59. M. Pont, M. J. Offenhaus, and M. Gavrila, Z. Phys. D 9, 297 (1988); M. Pont, Phys. Rev. A 40, 5659 (1989).

    Article  CAS  Google Scholar 

  60. M. Pont, N. R. Walet, and M. Gavrila, Phys. Rev. A 41, 477 (1990).

    Article  CAS  Google Scholar 

  61. M. Pont, Phys. Rev. A 44, 2141 (1991).

    Article  CAS  Google Scholar 

  62. M. Pont, Phys. Rev. A 44, 2152 (1991).

    Article  CAS  Google Scholar 

  63. K. C. Kulander, K. J. Schafer, and J. L. Krause, Adv. At. Mol. Phys. Supplement1 (1993).

    Google Scholar 

  64. K. C. Kulander, Phys. Rev. A 36, 2726 (1987); 38, 778 (1988).

    Article  CAS  Google Scholar 

  65. K. J. Schafer and K. C. Kulander, Phys. Rev. A 45, 8026 (1992).

    Article  CAS  Google Scholar 

  66. See, for example, S.-I. Chu, Adv. At. Mol. Phys. 21, 197 (1985), and S.-I. Chu, Adv. Chem. Phys. 73, 739 (1989).

    Article  CAS  Google Scholar 

  67. J. H. Shirley, Phys. Rev. 138B, 979 (1965).

    Article  Google Scholar 

  68. I. I. Rabi, Phys. Rev. 51, 652 (1937).

    Article  CAS  Google Scholar 

  69. See Ref. 44, p. 352.

    Google Scholar 

  70. S.-I. Chu and W. P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977).

    Article  CAS  Google Scholar 

  71. R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 38, 6190 (1988).

    Article  Google Scholar 

  72. Y. B. Zel’dovich, Sov. Phys. Usp. 16, 427 (1973).

    Article  Google Scholar 

  73. See, for example, R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 41, 1609 (1990).

    Article  CAS  Google Scholar 

  74. B. Junker, Adv. At. Mol. Phys. 18, 207 (1982).

    Article  CAS  Google Scholar 

  75. J. N. Bardsley and M. J. Cornelia, Phys. Rev. A 39, 2252 (1989).

    Article  Google Scholar 

  76. R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 40, 3061 (1989).

    Article  CAS  Google Scholar 

  77. R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 38, 1098 (1988), and R. Shakeshaft and X. Tang, Phys. Rev. A 36, 3193 (1987).

    Article  CAS  Google Scholar 

  78. K. C. Kulander, Phys. Rev. A 35, 445 (1987).

    Article  CAS  Google Scholar 

  79. S.-I. Chu and J. Cooper, Phys. Rev. A 32, 2769 (1985).

    Article  CAS  Google Scholar 

  80. K. C. Kulander, personal communication.

    Google Scholar 

  81. M. S. Pindzola, D. C. Griffin, and C. Bottcher, Phys. Rev. Lett. 66, 2305 (1991).

    Article  CAS  Google Scholar 

  82. M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, Phys. Rev. A 37, 747 (1980).

    Article  Google Scholar 

  83. These equations and some of the ideas presented here are contained in M. Aymar and M. Crance, J. Phys. (Paris) 14, 3585 (1981).

    CAS  Google Scholar 

  84. See Ref. 44, p. 314.

    Google Scholar 

  85. See Ref. 44, p. 292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mittleman, M.H. (1993). Multiphoton Ionization. In: Introduction to the Theory of Laser-Atom Interactions. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2436-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2436-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2438-4

  • Online ISBN: 978-1-4899-2436-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics