Skip to main content

Biological and Biogeochemical Preludes to the Ediacaran Radiation

  • Chapter
Origin and Early Evolution of the Metazoa

Part of the book series: Topics in Geobiology ((TGBI,volume 10))

Abstract

Evolution is sometimes envisioned as a dynamic process played out on an inert or passive planetary platform; however, if the geological record contains a message for evolutionary biology, other than the fact of the fossil record itself, it is that the Earth’s surface is in a continual state of change. On various time scales, climates fluctuate, reservoirs and fluxes of biogeochemical cycles vary, sea levels rise and fall, and oceanic water masses form and decay, while continents grow, split apart, drift, and recombine. At the same time, organisms that compete with, prey upon, provide food for, or live in symbiotic association with any given taxon of interest radiate, undergo morphological and physiological change, and become extinct. This is the context of evolution, and paleontological efforts to understand evolutionary events of the past require that we attempt to root those events in the context of ongoing biological and environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon, P., Schidlowski, M., and Singh, I. B., 1987, Chronostratigraphic markers in end-Precambrian carbon isotope record of the Lesser Himalaya, Nature 327:699–702.

    Article  CAS  Google Scholar 

  • Al-Marjeby, A., and Nash, D., 1986, A summary of the geology and oil habitat of the Eastern Flank Hydrocarbon Province of South Oman, Mar. Pet. Geol. 3:306–314.

    Article  CAS  Google Scholar 

  • Arthur, M. A., and Jenkyns, H. C., 1981, Phosphorites and paleoceanography, Oceanol. Acta Spec. Publ. 1981:83–96.

    Google Scholar 

  • Awramik, S. M., 1971, Precambrian columnar stromatolite diversity: Reflection of metazoan appearance, Science 174:825–827.

    Article  PubMed  CAS  Google Scholar 

  • Awramik, S. M., McMennamin, D. S., Yin, C., Zhao, Z., Ding, Q., and Zhang, S., 1985, Prokaryotic and eukaryotic microfossils from a Proterozoic/Phanerozoic transition in China, Nature 315:655–658.

    Article  Google Scholar 

  • Banerjee, D. M., Schidlowski, M., and Arneth, J. D., 1986, Genesis of Upper Proterozoic-Cambrian phosphorite deposits of India: Isotopic inferences from carbonate fluorapatite, carbonate and organic carbon, Precambrian Res. 33:239–253.

    Article  CAS  Google Scholar 

  • Berkner, L. V., and Marshall, L. C., 1965, On the origin and rise of oxygen concentration in the Earth’s atmosphere, J. Atmos. Sci. 22:225–261.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1973, Phosphate removal from sea-water by absorption on volcanogenic ferric oxides, Earth Planet. Sci. Lett. 18:77–86.

    Article  CAS  Google Scholar 

  • Blake, A. J., and Carver, J. H., 1977, The evolutionary role of atmospheric ozone, J. Atmos. Sci. 34:720–728.

    Article  CAS  Google Scholar 

  • Bloeser, B., 1985, Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona, J. Paleontol. 59:741–765.

    Google Scholar 

  • Boaden, P. J. S., 1975, Anaerobiosis, meiofauna, and early metazoan evolution, Zool. Scripta 4:21–34.

    Article  Google Scholar 

  • Bond, G. C., Nickeson, P. A., and Kominz, M. A., 1984, Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories, Earth Planet. Sci. Lett. 70:325–345.

    Article  Google Scholar 

  • Britten, R. J., 1986, Rates of DNA sequence evolution differ between taxonomic groups, Science 231:1393–1398.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, N. J., Knoll, A. H., and Swett, K., 1988, Exceptional preservation of fossils in Upper Proterozoic shale, Nature 334:424–427.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, N. J., Knoll, A. H., and Swett, K., 1990, A bangiophyte red alga from the Proterozoic of arctic Canada, Science 250:104–107.

    Article  PubMed  CAS  Google Scholar 

  • Canuto, V. M., Levine, J. S., Augustsson, T. R., and Imhoff, C. L., 1982, UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere, Nature 296:816–820.

    Article  CAS  Google Scholar 

  • Canuto, V. M., Levine, J. S., Augustsson, T. R., Imhoff, C. L., and Giampapa, M. S., 1983, The young Sun and the atmosphere and photochemistry of the early Earth, Nature 305:281–286.

    Article  CAS  Google Scholar 

  • Chapman, D. J., and Schopf, J. W., 1983, Biological and biochemical effects of the development of an aerobic environment, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 302–320.

    Google Scholar 

  • Cloud, P., 1968a, Pre-metazoan evolution and the origins of the metazoa, in: Evolution and Environment (T. Drake, ed.), Yale University Press, New Haven, Connecticut, pp. 1–72.

    Google Scholar 

  • Cloud, P. E., 1968b, Atmospheric and hydrospheric evolution on the primitive earth, Science 160:729–736.

    Article  PubMed  CAS  Google Scholar 

  • Cloud, P., 1976, Beginnings of biospheric evolution and their biogeochemical consequences, Pal-eohiology 2:351–387.

    CAS  Google Scholar 

  • Cloud, P., Gustafson, L. B., and Watson, J. A. L., 1980, The work of living social insects and the age of the oldest known metazoa, Science 210:1013–1015.

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris, S., 1987, The search for the Precambrian-Cambrian boundary, Am. Sci. 75:157–167.

    Google Scholar 

  • Cook, P. J., and Shergold, J. H., 1984, Phosphorus, phosphorites, and skeletal evolution at the Precambrian-Cambrian boundary, Nature 308:231–236.

    Article  CAS  Google Scholar 

  • Cope, M. J., and Chaloner, W. G., 1985, Wildfire: An interaction of biological and physical processes, in: Geological Factors and the Evolution of Plants (B. H. Tiffney, ed.), Yale University Press, New Haven, Connecticut, pp. 257–277.

    Google Scholar 

  • Coveney, R. M., Jr., and Shaffer, N. R., 1988, Sulfur-isotope variations in Pennsylvanian shales of the midwestern United States, Geology 16:18–21.

    Article  CAS  Google Scholar 

  • De Graciansky, P. C., Deroo, G., Herbin, J. P., Montadert, L., Müller, C., Schaaf, A., and Sigal, J., 1984, Ocean-wide stagnation episode in the late Cretaceous, Nature 308:346–349.

    Article  Google Scholar 

  • Demaison, G. J., and Moore, G. T., 1980, Anoxic environments and oil source bed genesis, Am. Assoc. Pet. Geol. Bull. 64:1179–1209.

    CAS  Google Scholar 

  • Derry, L., and Jacobsen, S., 1988, The Nd and Sr isotopic evolution of Proterozoic seawater, Geophys. Res. Lett. 15:397–400.

    Article  CAS  Google Scholar 

  • Derry, L., Keto, L. S., Jacobsen, S., Knoll, A. H., and Swett, K., 1989, Sr isotopic variations of Upper Proterozoic carbonates from East Greenland and Svalbard, Geochim. Cosmochim. Acta, 53:2331–2339.

    Article  PubMed  CAS  Google Scholar 

  • Du, R., 1982, The discovery of the fossils such as Chuaria in the Qingbaikou System in northwestern Hebei and their significance, Geol. Rev. 28:1–7 [in Chinese, with English abstract].

    Google Scholar 

  • Du, R., Tian, L., and Li, H., 1986, Discovery of megafossils in the Gaoyuzhuang Formation of the Changchengian System, Jixian, Acta Geol. Sinica 1986:115–120 [in Chinese, with English abstract].

    Google Scholar 

  • Eichmann, R., and Schidlowski, M., 1975, Isotopic fractionation between coexisting organic carbon-carbonate carbon pairs in Precambrian sediments, Geochim. Cosmochim. Acta 39:585–595.

    Article  CAS  Google Scholar 

  • Emerson, S., Fischer, K., Reimers, C., and Heggie, D., 1985, Organic carbon dynamics and preservation in deep-sea sediments, Deep Sea Res. 32:1–21.

    Article  CAS  Google Scholar 

  • Fairchild, I. J., and Hambrey, M. J., 1984, The Vendian of NE Spitsbergen: Petrogenesis of a dolomite-tillite association, Precambrian Res. 26:111–167.

    Article  Google Scholar 

  • Fairchild, I. J., and Spiro, B., 1987, Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen, Sedimentology 34:973–989.

    Article  CAS  Google Scholar 

  • Fenchel, T., and Riedl, R. J., 1970, The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms, Mar. Biol. 7:225–268.

    Article  Google Scholar 

  • Field, K. G., Olsen, G. J., Lane, D. J., Giavannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., and Raff, R. A., 1988, Molecular phylogeny of the animal kingdom, Science 239:748–753.

    Article  PubMed  CAS  Google Scholar 

  • Fox, G. E., et al., 1980, The phylogeny of prokaryotes, Science 209:457–463.

    Article  PubMed  CAS  Google Scholar 

  • Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R., and De Vries, T., 1982, The marine phosphorus cycle, Am. J. Sci. 282:474–511.

    Article  CAS  Google Scholar 

  • Fry, W., 1983, An algal flora from the Upper Ordovician of the Lake Winnipeg region, Manitoba, Canada, Rev. Paleohot. Palynol. 39:313–341.

    Article  Google Scholar 

  • Glaessner, M., 1984, The Dawn of Animal Life: A Biohistorical Study, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gnilovskaya, M. B., 1979, The Venian Metaphyta, Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 3:611–618.

    Google Scholar 

  • Golubic, S., and Hofmann, H. J., 1976, Comparison of modern and mid-Precambrian Ento-physalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation, J. Paleontol. 50:1074–1.

    Google Scholar 

  • Green, J. W., Knoll, A. H., Golubic, S., and Swett, K., 1987, Paleobiology of distinctive benthic micro-fossils from the Upper Proterozoic Limestone-Dolomite “Series”, East Greenland, Am. J. Bot. 74:928–940.

    Article  PubMed  CAS  Google Scholar 

  • Green, J. W., Knoll, A. H., and Swett, K. S., 1988a, Microfossils in oolites and pisolites from the Upper Proterozoic Eleonore Bay Group, central East Greenland, J. Paleontol. 62:835–852.

    PubMed  CAS  Google Scholar 

  • Green, J. W., Knoll, A. H., and Swett, K., 1989, Microfossils in silicified stromatolitic carbonates from the Upper Proterozoic Limestone-Dolomite “Series”, central East Greenland, Geol. Mag. 126:567–585.

    Article  PubMed  CAS  Google Scholar 

  • Grey, K., and Williams, I. R., 1990, Problematic bedding plane markings from the Middle Proterozoic Manganese Group, Bangemall Basin, Western Australia, Precambrian Res. 46:307–327.

    Article  Google Scholar 

  • Halls, H. C., and Fahrig, W. F. (eds.), 1987, Mafic Duke Swarms, Geol. Assoc. Can. Spec. Pap. 34.

    Google Scholar 

  • Hambrey, M. J., and Harland, W. B., 1985, The Late Proterozoic glacial era, Palaeogeogr. Pal-aeoclimatol. Palaeoecol. 51:255–272.

    Article  Google Scholar 

  • Harland, W. B., and Gayer, R. A., 1972, The Arctic Caledonides and earlier oceans, Geol. Mag. 109:289–384.

    Article  Google Scholar 

  • Hayes, J. M., 1983, Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 291–301.

    Google Scholar 

  • Hofmann, H. J., 1985a, Precambrian carbonaceous megafossils, in: Paleoalgology: Contemporary Research and Applications (D. F. Toomey and M. H. Nitecki, eds.), Springer-Verlag, Berlin, pp. 20–33.

    Chapter  Google Scholar 

  • Hofmann, H. J., 1985b, The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada, Paleontology 28:331–354.

    Google Scholar 

  • Hofmann, H. J., 1987, Precambrian biostratigraphy, Geosci. Can. 14:135–154.

    Google Scholar 

  • Hofmann, H. J., and Aitken, J. D., 1979, Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada, Can. J. Earth Sci. 16:150–166.

    Article  Google Scholar 

  • Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Holland, H. D., 1989, Volcanic gases and isotopic record of carbon and sulfur in sedimentary rocks, in: Abstracts. 28th International Geological Congress, Washington, D.C., Vol. 2, p. 66.

    Google Scholar 

  • Holser, W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in: Patterns of Change in Earth Evolution (H. D. Holland and A. F. Trendall, eds.), Springer-Verlag, Berlin, pp. 123–144.

    Chapter  Google Scholar 

  • Holser, W. T., Magaritz, M., and Wright, J., 1986, Chemical and isotopic variations in the world ocean during the Phanerozoic, in: Global Bio-Events (O. Walliser, ed.), Springer-Verlag, Berlin, pp. 63–74.

    Chapter  Google Scholar 

  • Horodyski, R. J., 1980, Middle Proterozoic shale-facies microbiota from the lower Belt Supergroup, Little Belt Mountains, Montana, J. Paleontol. 54:649–663.

    Google Scholar 

  • Horodyski, R. J., 1982, Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana, J. Paleontol. 56:882–889.

    Google Scholar 

  • Horodyski, R. J., 1986, Walcott’s Helminthoidichnites assemblage from the Middle Proterozoic Belt Supergroup, Geol. Soc. Am. Ahstr. Progr. 18:640.

    Google Scholar 

  • Jackson, M. J., Powell, T. G., Summons, R. E., and Sweet, I. P., 1986, Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years, Nature 322:727–729.

    Article  CAS  Google Scholar 

  • Jankauskas, T. V., 1982, Microfossils from the Riphean of the Southern Urals, in: Stratotype of the Riphean: Paleontology and Paleomagnetics (B. M. Keller, ed.), Nauka, Moscow, pp. 84–120.

    Google Scholar 

  • Kasting, J. F., 1985, Photochemical consequences of enhanced CO2 levels in Earth’s early atmosphere, in: The Carbon Cycle and Atmospheric CO 2: Natural Variation Archean to Present (E. T. Sundquist and W. S. Broecker, eds.), American Geophysical Union, Washington, D.C., pp. 612–622.

    Chapter  Google Scholar 

  • Kasting, J. F., 1987, Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere, Precambrian Res. 34:205–229.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J. F., Holland, H. D., and Pinto, J. P., 1985, Oxidant abundances in rainwater and the evolution of atmospheric oxygen, J. Geophys. Res. 90:10497–10510.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, A. J., Hayes, J. M., Knoll, A. H., and Germs, J. G. B., 1991, Secular variation of stable carbon isotope ratios in the Upper Proterozoic Otavi and Nama groups, Namibia/South West Africa, Precambrian Res. 49:301–327.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B. M., and Jankauskas, T. V., 1982, Microfossils in the Riphean stratotype section in the Southern Urals, Int. Geol. Rev. 24:925–933.

    Article  Google Scholar 

  • Kenyon, C., 1988, The nematode Caenorhabditis elegans, Science 240:1448–1453.

    Article  PubMed  CAS  Google Scholar 

  • Knoll, A. H., 1984, Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard, J. Paleontol. 58:131–162.

    Google Scholar 

  • Knoll, A. H., 1985a, The distribution and evolution of microbial life in the late Proterozoic era, Annu. Rev. Microbiol 39:391–417.

    Article  PubMed  CAS  Google Scholar 

  • Knoll, A. H., 1985b, Patterns of evolution in the Archean and Proterozoic eons, Paleobiology 11:53–64.

    Google Scholar 

  • Knoll, A. H., 1987, Protists and Phanerozoic evolution in the oceans, in: Fossil Prokaryotes and Protists: Notes for a Short Course (J. Lipps and T. Broadhead, eds.), University of Tennessee Press, Knoxville, Tennessee, pp. 248–264.

    Google Scholar 

  • Knoll, A. H., and Calder, S., 1983, Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard, Palaeontology 26:467–496.

    Google Scholar 

  • Knoll, A. H., and Swett, K., 1987, Micropaleontology across the Precambrian-Cambrian boundary in Spitsbergen, J. Paleontol. 61:898–926.

    Google Scholar 

  • Knoll, A. H., and Vidal, G., 1980, Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden, Geol. Foren. Stockh. Förh. 102:207–211.

    Article  Google Scholar 

  • Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B., 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland, Nature 321:832–838.

    Article  PubMed  CAS  Google Scholar 

  • Knoll, A. H., Swett, K., and Burkhardt, E., 1989, The paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen, J. Paleontol. 63:129–145.

    PubMed  CAS  Google Scholar 

  • Lagutenkova, N. S., and Chepikova, I. K., 1982, Upper Proterozoic Rocks of the Volga-Ural Region and Their Petroleum Potential, Nauka, Moscow [in Russian].

    Google Scholar 

  • Lambert, I. B., and Donnelly, T. H., 1990, The paleoenvironmental significance of trends in sulfur isotope compositions in the Precambrian: A critical review, in: Stable Isotopes and Fluid Processes in Mineralization (H. K. Herbert and S. E. Ho, eds.), Spec. Publ. 23 Geol. Soc. Austr.:260-263.

    Google Scholar 

  • Lambert, I. B., Walter, M. R., Zang, W., Lu, S., and Ma, G., 1987, Paleoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform, Nature 325:140–142.

    Article  CAS  Google Scholar 

  • Lerman, A., Mackenzie, F. T., and Garrels, R. M., 1975, Modeling of geochemical cycles: Phosphorus as an example, Geol. Soc. Am. Mem. 142:205–218.

    CAS  Google Scholar 

  • Levine, J. S., Boughner, R. E., and Smith, K. A., 1980, Ozone, ultraviolet flux, and the temperature of the paleoatmosphere, Origins Life 10:199–213.

    Article  CAS  Google Scholar 

  • Lindsay, J. F., Korsch, R. J., and Wilford, J. R., 1987, Timing the breakup of a Proterozoic superconti-nent: Evidence from Australian intracontinental basins, Geology 15:1061–1064.

    Article  Google Scholar 

  • Magaritz, M., Holser, W. T., and Kirschvink, J. L., 1986, Carbon-isotope events across the Precambrian/ Cambrian boundary on the Siberian Platform, Nature 320:258–259.

    Article  CAS  Google Scholar 

  • Makarevich, V. N., 1985, Geologic Framework and Evolution of Aulacogens and Their Petroleum Potential, VNIIOENG., Moscow [in Russian].

    Google Scholar 

  • Margulis, L., Grosovsky, B. D. D., Stolz, J. F., Gong-Collins, E. J., Lenk, S., Read, D., and Lopez-Cortes, A., 1983, Distinctive microbial structures and the pre-Phanerozoic fossil record, Precambrian Res. 20:443–477.

    Article  Google Scholar 

  • Matthews, S. C., and Cowie, J. W., 1979, Early Cambrian transgressions, J. Geol. Soc. Lond. 136:133–135.

    Article  Google Scholar 

  • Morel, P., and Irving, E., 1983, Tentative paleocontinental maps for the Early Phanerozoic and Proterozoic, J. Geol. 5:535–561.

    Google Scholar 

  • Murray, G. E., Kaczor, N. J., and McArthur, R. E., 1980, Indigenous Precambrian petroleum revisited, Am. Assoc. Pet. Geol. Bull. 64:1681–1700.

    Google Scholar 

  • Notholt, A. J. G., and Sheldon, R. P., 1986, Proterozoic and Cambrian phosphorites—Regional review: World resources, in: Phosphate Deposits of the World, Vol. 1, Proterozoic and Cambrian Phosphorites (P. J. Cook and J. H. Shergold, eds.), Cambridge University Press, Cambridge, pp. 9–19.

    Google Scholar 

  • Nursall, J. R., 1959, Oxygen as a prerequisite to the origin of the metazoa, Nature 183:1170–1172.

    Article  Google Scholar 

  • Parker, B. C., and Dawson, E. Y., 1965, Non-calcareous marine algae from California Miocene deposits, Nova Hedwig. 10:273–295.

    Google Scholar 

  • Parrish, J. T., Ziegler, A. M., Scotese, C. R., Humphreville, R. G., and Kirschvink, J. L., 1986, Proterozoic and Cambrian phosphorites—Specialist studies: Early Cambrian paleogeography, paleoceanogra-phy, and phosphorites, in: Phosphate Deposits of the World, Vol. 1, Proterozoic and Cambrian Phosphorites (P. J. Cook and J. H. Shergold, eds.), Cambridge University Press, Cambridge, pp. 280–294.

    Google Scholar 

  • Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S., 1978, Proterozoic micro-fossils from the Roper Group, Northern Territory, Australia, Bur. Miner. Resour. J. Austr. Geol. Geophys. 3:1–17.

    Google Scholar 

  • Piper, J. D. A., 1976, Paleomagnetic evidence for a Late Proterozoic supercontinent, Philos. Trans. R. Soc. Lond. 280A:469–490.

    Google Scholar 

  • Piper, J. D. A., 1982, The Precambrian paleomagnetic record: The case for the Proterozoic superconti-nent, Earth Planet, Sci. Lett. 59:61–89.

    Article  Google Scholar 

  • Porter, K. G., and Robbins, E. I., 1981, Zooplankton fecal pellets link fossil fuel and phosphate deposits, Science 212:931–933.

    Article  PubMed  CAS  Google Scholar 

  • Postnikova, I. E., 1977, Upper Precambrian Rocks of the Russian Plate and Their Petroleum Potential, Nauka, Moscow [in Russian].

    Google Scholar 

  • Powell, T., 1987, Petroleum geology of the Siberian Platform, Bull. Miner. Resour. Res. Newsl. 6:11.

    Google Scholar 

  • Raff, R. A., and Raff, E. C., 1970, Respiratory mechanisms and the metazoan fossil record, Nature 228:1003–1004.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecological significance of oxygen-deficient marine basins, Lethaia 4:413–428.

    Article  Google Scholar 

  • Runnegar, B., 1982a, The Cambrian explosion: Animals or fossils?, J. Geol. Soc. Aust. 29:395–411.

    Article  Google Scholar 

  • Runnegar, B., 1982b, Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit, Alcheringa 6:223–239.

    Article  Google Scholar 

  • Runnegar, B., 1984, Molecular palaeontology, Palaeontology 29:1–24.

    Google Scholar 

  • Sathyanarayan, S., Arneth, J. D., and Schidlowski, M., 1987, Stable isotope geochemistry of sedimentary carbonates rom the Proterozoic Kaladgi, Badami, and Bhima groups, Karnataka, India, Precambrian Res. 37:147–156.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Eichmann, R., and Junge, C. E., 1975, Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget, Precambrian Res. 2:1–69.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Eichmann, R., and Junge, C. E., 1976, Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia, Geochim. Cosmochim. Acta 40:449–455.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Hayes, J. M., and Kaplan, I. R., 1983, Ancient biochemistries, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 149–186.

    Google Scholar 

  • Schlanger, S. O., and Jenkyns, H. C., 1976, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw 55:179–184.

    Google Scholar 

  • Scholle, P. A., and Arthur, M. A., 1980, Carbon isotope fluctuations in Creataceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, Am. Assoc. Pet. Geol. Bull. 64:67–87.

    CAS  Google Scholar 

  • Schopf, J. W., 1972, Evolutionary significance of the Bitter Springs (late Precambrian) microflora, in: Proceedings 24th International Geological Congress, Section 1, pp. 68–77.

    Google Scholar 

  • Schwarcz, H. P., and Burnie, S. W., 1973, Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: A review, Mineral. Deposita 8:264–277.

    Article  CAS  Google Scholar 

  • Shaw, H. F., and Wasserburg, G. J., 1985, Sm-Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages, Geochim. Cosmochim. Acta 49:503–518.

    Article  CAS  Google Scholar 

  • Shpount, B. R., and Oleinikov, B. V., 1987, A comparison of mafic swarms from the Siberian and Russian platforms, in: Mafic Duke Swarms (H. C. Halls and W. F. Fahrig, eds.), Geol. Assoc. Can. Spec. Paper 34:379–383.

    CAS  Google Scholar 

  • Sogin, M. L., Elwood, H. L., and Gunderson, J. H., 1986, Evolutionary diversity of eukaryotic small-subunit rRNA genes, Proc. Natl. Acad. Sci. USA 83:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, H., 1988, Proterozoic organic carbon—Preservation and record, in: Abstracts Symposium, The Proterozoic Biosphere: An Interdisciplinary Study, Los Angeles, California, p. 31.

    Google Scholar 

  • Summons, R. E., 1987, Branched alkanes from ancient and modern sediments: Isomer discrimination by GC/MS with multiple reaction monitoring, Org. Geochem. 11:281–289.

    Article  CAS  Google Scholar 

  • Summons, R. E., Powell, T. G., and Boreham, C. J., 1988a, Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia, Geochim. Cosmochim. Acta 52:1747–1763.

    Article  CAS  Google Scholar 

  • Summons, R. E., Volkman, J. K., and Boreham, C. J., 1988b, Dinosterane and other 4-methyl steranes of dinoflagellate origin from sediments and petroleum, Geochim. Cosmochim. Acta 51:3075–3082.

    Article  Google Scholar 

  • Tang, Z., and Zhan, S. (eds.), 1984, Forming Conditions of Sinian Gas Pool in Sichuan Basin, Beijing Petroleum Geology Symposium, Special Publication, Beijing.

    Google Scholar 

  • Tappan, H., 1980, The Paleobiology of Plant Protists, Freeman, San Francisco.

    Google Scholar 

  • Tappan, H., and Loeblich, A. R., Jr., 1972, Fluctuating rates of protistan evolution, diversification, and extinction, in: Proceedings. 24th International Geological Congress, Section 7, pp. 205-213.

    Google Scholar 

  • Tappan, H., and Loeblich, A. R., Jr., 1973, Evolution of the oceanic plankton, Earth Sci. Rev. 9:207–240.

    Article  Google Scholar 

  • Timofeev, B. V., 1959, The oldest flora of Pre-Baltica and its stratigraphie significance, Trudy VNIGRI 129:1–320 [in Russian].

    Google Scholar 

  • Timofeev, B. V., German, T. N., and Mikhailova, N., 1976, Plant Microfossils of the Precambrian, Cambrian, and Ordovician, Nauka, Institute of Precambrian Geology and Geochronology, Leningrad [in Russian].

    Google Scholar 

  • Tissot, B. P., and Weite, D. H., 1984, Petroleum Formation and Occurrence, Springer-Verlag, Berlin.

    Google Scholar 

  • Towe, K. M., 1970, Oxygen-collagen priority and the early metazoan fossil record, Proc. Natl. Acad. Sci. USA 65:781–788.

    Article  PubMed  CAS  Google Scholar 

  • Towe, K. M., 1981, Biochemical keys to the emergence of complex life, in: Life in the Universe (J. Billingham, ed.), MIT Press, Cambridge, Massachusetts, pp. 297–306.

    Google Scholar 

  • Tucker, M. E., 1986, Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco, Nature 319:48–50.

    Article  Google Scholar 

  • Tyson, R. V., 1987, The genesis and palynofacies characteristics of marine petroleum source rocks, in: Marine Petroleum Source Rocks (J. Brooks and A. J. Fleet, eds.), Spec. Publ. Geol. Soc. Lond. 26:47–67.

    Article  Google Scholar 

  • Veizer, J., Holser, W. T., and Wilgus, C. K., 1980, Correlation of 13C/12C and 34S/32S secular variations, Geochim. Cosmochim. Acta 44:579–587.

    Article  CAS  Google Scholar 

  • Veizer, J., Compston, W., Clauer, N., and Schidlowski, M., 1983, 87Sr/86Sr in Late Proterozoic carbonates: Evidence for a “mantle event” at 900 Ma ago, Geochim. Cosmochim. Acta 40:905–914.

    Article  Google Scholar 

  • Vidal, G., and Knoll, A. H., 1983, Proterozoic plankton, Geol. Soc. Am. Mem. 161:265–277.

    Google Scholar 

  • Volkova, N., Kirjanov, V. V., Piskun, L. V., Paskeviciene, L. T., and Jankauskas, T. V., 1983, Plant microfossils, in: Upper Precambrian and Cambrian Paleontology of the East-European Platform (A. Urbanek and A. Y. Rozanov, eds.), Wydawnnictwa Geologzne, Warsaw, pp. 7–46.

    Google Scholar 

  • Volkova, N., 1985, Acritarchs and other plant microfossils from the East European Platform, in: Vendian System, Vol. 1: Paleontology (B. V. Sokolov and A. B. Ivanovsky, eds.), Nauka, Moscow, pp. 130–139 [in Russian].

    Google Scholar 

  • Walcott, C. D., 1899, Pre-Cambrian fossiliferous formations, Geol. Soc. Am. Bull. 10:199–244.

    Google Scholar 

  • Walker, J. C. G., 1977, Evolution of the Atmosphere, Macmillan, New York.

    Google Scholar 

  • Walker, J. C. G., and Knoll, A. H., 1986, Ice ages caused by biological innovation, EOS 67:868 (Abstract).

    Google Scholar 

  • Walter, M. R., 1982, Proterozoic and Cambrian petroleum, Annu. Rep. Baas Becking Geobiol. Lab. 1981:45–46.

    Google Scholar 

  • Walter, M. R., and Heys, G. R., 1985, Links between the rise of the Metazoa and the decline of stromatolites, Precambrian Res. 29:149–174.

    Article  Google Scholar 

  • Walter, M. R., Oehler, J. H., and Oehler, D. Z., 1976, Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthoidichnites, J. Paleontol. 50:872–881.

    Google Scholar 

  • Wang, F., Liu, R., and Zhao, D., 1987, Precambrian stromatolite oxygen isotopes from Sichuan-Yunnan area and its significance, Bull. Chengdu Inst. Geol. Min. Res. 8:61–68.

    Google Scholar 

  • Williams, G. W., 1979, Sedimentology, stable-isotope geochemistry, and palaeoenvironments of dol-ostones capping late Precambrian glacial sequences in Australia, J. Geol. Soc. Aust. 26:377–386.

    Article  CAS  Google Scholar 

  • Wilson, A. C., Ochman, H., and Prager, E. M., 1987, Molecular time scale for evolution, Trends Genet. 3:241–247.

    Article  CAS  Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

  • Yin, L., 1985, Microfossils of the Duoshantuo Formation in the Yangtze Gorge District, Western Hubei, Palaeontol. Cath. 2:229–249.

    Google Scholar 

  • Young, G. M., 1976, Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Precambrian Res. 3:137–158.

    Article  Google Scholar 

  • Zang, W., and Walter, M. R., 1988, Plankton of the latest Proterozoic: An Ediacaran age flora from the Amadeus Basin, central Australia, Nature 337:632–645.

    Google Scholar 

  • Zhang, Z., 1986, Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China, J. Micropalaeontol. 5:9–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knoll, A.H. (1992). Biological and Biogeochemical Preludes to the Ediacaran Radiation. In: Lipps, J.H., Signor, P.W. (eds) Origin and Early Evolution of the Metazoa. Topics in Geobiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2427-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2427-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2429-2

  • Online ISBN: 978-1-4899-2427-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics