Skip to main content

Part of the book series: Topics in Geobiology ((TGBI,volume 10))

Abstract

Macroevolution is taken to deal with the origins of novel branches of the tree of life at levels above that of species, and with the processes that produce and regulate changes within those branches as they wax and wane through geologic time. This stands in contrast to microevolution, which deals with the processes that produce and regulate heritable change within populations and species, and that can lead to speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, S. P., 1977, Trace fossils and the basal Cambrian boundary, Geol. J. Spec. Issue 9:1–8.

    Google Scholar 

  • Anderson, D. T., 1973, Embryology and Phylogeny of Annelids and Arthropods, Pergamon Press, Oxford.

    Google Scholar 

  • Arthur, W., 1984, Mechanisms of Morphological Evolution, Wiley, New York.

    Google Scholar 

  • Arthur, W., 1988, A Theory of the Evolution of Development, Wiley, Chichester, England.

    Google Scholar 

  • Barnes, R. S. K. (ed.), 1984, A Synoptic Classification of Living Organisms, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Beklemishev, W. N., 1969, Principles of Comparative Anatomy of Invertebrates, Chicago University Press, Chicago.

    Google Scholar 

  • Bengston, S., and Conway Morris, S., 1984, A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia, Lethaia 17:307–329.

    Article  Google Scholar 

  • Bergh, R. S., 1985, Die Exkretionsorgane der Wurmer, Kosmos (Lvov) 17:97–122.

    Google Scholar 

  • Bergstrom, J., 1985, Metazoan evolution—A new model, Zool. Scripta 15:189–200.

    Article  Google Scholar 

  • Birket-Smith, S. J. R., 1981, A reconstruction of the Pre-Cambrian Spriggina, Zool. Jahrb. Anat. 105:237–258.

    Google Scholar 

  • Bonner, J. T., 1988, The Evolution of Complexity by Means of Natural Selection, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Brasier, M. D., 1989a, Sections in England and their correlation, in: The Precamhrian-Cambrian Boundary (J. W. Cowie and M. D. Brasier, eds.), Clarendon Press, Oxford, pp. 82–104.

    Google Scholar 

  • Brasier, M. D., 1989b, Biostratigraphy of the earliest skeletal biotas, in: The Precambrian-Cambrian Boundary (J. W. Cowie and M. D. Brasier, eds.), Clarendon Press, Oxford, pp. 117–165.

    Google Scholar 

  • Briggs, D. E. C., 1978, The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc. Lond. B 281:439–487.

    Article  Google Scholar 

  • Briggs, D. E. G., 1983, Affinities and early evolution of the Crustacea: The evidence of the Cambrian fossils, in Crustacean Phylogeny (F. R. Schram, ed.), Balkema, Rotterdam, pp. 1–29.

    Google Scholar 

  • Briggs, D. E. C., and Collins, D., 1988, A Middle Cambrian chelicerate from Mount Stephen, British Columbia, Palaeontology 31:779–798.

    Google Scholar 

  • Britten, R. J., 1986, Rates of DNA sequence evolution differ between taxonomic groups, Science 231:1393–1398.

    Article  CAS  PubMed  Google Scholar 

  • Britten, R. J., and Davidson, E. H., 1971, Repetetive and non-repetetive DNA sequences and a speculation on the origins of evolutionary novelty, Q. Rev. Biol. 46:111–133.

    Article  CAS  PubMed  Google Scholar 

  • Buss, L. W., 1987, The Evolution of Individuality, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Buss, L. W., 1988, Diversification and germ-line determination, Paleobiology 14:313–321.

    Google Scholar 

  • Butterfield, N. J., 1990, A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa, Paleobiology 16:287–303.

    Google Scholar 

  • Chen, J.-Y., 1988, Precambrian metazoans of the Huai River drainage area (Anhui, E. China): Their taphonomic and ecological evidence, Senckenb. Lethaea 69:189–215.

    Google Scholar 

  • Chen, J.-Y., Hou, X.-C., and Lu, H.-Z., 1989, Early Cambrian netted scale-bearing worm-like sea animal, Acta Palaeontol. Sinica 28:1–16.

    Google Scholar 

  • Cisne, J. L., 1974, Trilobites and the origin of arthropods, Science 186:13–18.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R. B., 1964, Dynamics in Metazoan Evolution, Clarendon Press, Oxford.

    Google Scholar 

  • Cloud, P. E., 1949, Some problems and patterns of evolution exemplified by fossil invertebrates, Evolution 2:322–350.

    Article  Google Scholar 

  • Conway Morris, S., 1977, A new metazoan from the Cambrian Burgess Shale of British Columbia, Palaeontology 20:623–640.

    Google Scholar 

  • Conway Morris, S., 1979a, The Burgess Shale (Middle Cambrian) fauna, Annu. Rev. Ecol. Syst. 10:327–349.

    Article  Google Scholar 

  • Conway Morris, S., 1979b, Middle Cambrian polychaetes from the Burgess Shale of British Columbia, Philos. Trans. R. Soc. Lond. B 285:227–274.

    Article  Google Scholar 

  • Conway Morris, S., 1981, Parasites and the fossil record, Parasitology 82:489–509.

    Article  Google Scholar 

  • Conway Morris, S., 1985, The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada, Philos. Trans. R. Soc. Lond. B 307:507–582.

    Article  Google Scholar 

  • Conway Morris, S., and Peel, J. S., 1990, Articulated halkieriids from the Lower Cambrian of north Greenland, Nature 345:802–805.

    Article  Google Scholar 

  • Conway Morris, S., Whittington, H. B., Briggs, D. E. G., Hughes, C. P., and Bruton, D. L., 1982, Atlas of the Burgess Shale, Palaeontological Association, London.

    Google Scholar 

  • Conway Morris, S., George, J. D., Gibson, R., and Platt, H. M. (eds.), 1985, The Origins and Relationships of Lower Invertebrates, Clarendon Press, Oxford.

    Google Scholar 

  • Cowie, J. W., and Harland, W. B., 1989, Chronometry, in: The Precambrian-Cambrian Boundary (J. W. Cowie and M. D. Brasier, eds.), Clarendon Press, Oxford, pp. 186–198.

    Google Scholar 

  • Crimes, T. P., 1974, Colonisation of the early ocean floor, Nature 248:328–330.

    Article  Google Scholar 

  • Crimes, T. P., 1987, Trace fossils and correlation of Late Precambrian and Early Cambrian strata, Geol. Mag. 124:97–119.

    Article  Google Scholar 

  • Crimes, T. P., 1989, Trace fossils, in: The Precambrian-Cambrian Boundary (J. W. Cowie and M. D. Brasier, eds.), Clarendon Press, Oxford, pp. 166–185.

    Google Scholar 

  • Cuvier, G., 1812, Sur un nouveau rapprochement à etablir entre les classes qui composent le regne animal, Ann. Mus. Hist. Nat. 19:73–84.

    Google Scholar 

  • Darwin, C. R., 1859, On the Origin of Species, Murray, London.

    Google Scholar 

  • De Jong, W., 1982, Eye lens proteins and vertebrate phylogeny, in: MacromoIecular Sequences in Systematics and Evolutionary Biology (M. Goodman, ed.), Plenum, New York, pp. 75–114.

    Chapter  Google Scholar 

  • Droser, M. L., and Bottjer, D. J., 1988a, Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States, Geology 16:233–236.

    Article  Google Scholar 

  • Droser, M. L., and Bottjer, D. J., 1988b, Trends in extent and depth of Early Paleozoic bioturbation in the Great Basin (California, Nevada and Utah), in: This Extended Land, Geological Journeys in the Southern Basin and Range (D. L. Weide and M. L. Faber, eds.), Geological Society of America Cordilleran Section, Las Vegas, Nevada, pp. 123–135.

    Google Scholar 

  • Dzik, J., and Krumbiegel, G., 1989, The oldest “onychoporan” Xenusion: A link connecting phyla?, Lethaia 22:169–181.

    Article  Google Scholar 

  • Elder, H. Y., 1972, Connective tissues, body wall structure, and their significance for the polychaete Polyphysia crassa (Lipobranchius Jeffreysi) (Oersted), J. Mar. Biol. Assoc. U. K. 52:747–764.

    Article  Google Scholar 

  • Elder, H. Y., 1980, Peristaltic mechanisms, in: Aspects of Animal Movement (H. Y Elder and E. R. Trueman, eds.), Cambridge University Press, Cambridge, pp. 71–92.

    Google Scholar 

  • Elder, H. Y., and Trueman, E. R., 1980, Aspects of Animal Movement, Cambridge University Press, Cambridge.

    Google Scholar 

  • Emig, C. C., 1978, Un nouvel embranchment: Les lophophorata, Bull. Soc. Zool. Fr. 102:341–344.

    Google Scholar 

  • Endler, J. A., and McLellan, T., 1988, The processes of evolution: Toward a newer synthesis, Annu. Rev. Ecol. Syst. 19:395–421.

    Article  Google Scholar 

  • Erwin, D. H., Valentine, J. W., and Sepkoski, J. J., Jr., 1987, A comparative study of diversification events: The early Paleozoic versus the Mesozoic, Evolution 41:1177–1186.

    Article  CAS  PubMed  Google Scholar 

  • Fedonkin, M. A., 1977, Precambrian-Cambrian ichnocoenoses of the East-European Platform, in: Trace Fossils 2 (T. P. Crimes and J. C. Harper, eds.), Geol. J. Spec. Issue 9:183–194.

    Google Scholar 

  • Fedonkin, M. A., 1982, Precambrian soft-bodied fauna and the earliest radiation of invertebrates, in: Proceedings. Third North American Paleontological Convention, Vol. 1, pp. 165–167.

    Google Scholar 

  • Fedonkin, M. A., 1985a, Nonskeletal fauna of the Vendian: Promorphological analysis, in: The Vendian System, Vol. 1, Paleontology (B. S. Sokolov and A. B. Ivanovskii, eds.), Nauka, Moscow, pp. 18–69 [in Russian].

    Google Scholar 

  • Fedonkin, M. A., 1985b, Systematic description of Vendian Metazoa, in: The Vendian System, Vol. 1, Paleontology (B. S. Sokolov and A. B. Ivanovskii, eds.), Nauka, Moscow, pp. 70–106 [in Russian].

    Google Scholar 

  • Fedonkin, M. A., 1985c, Paleoichnology of Vendian Metazoa, in: The Vendian System, Vol. 1, Paleontology (B. S. Sokolov and A. B. Ivanovskii, eds.), Nauka, Moscow, pp. 112–117 [in Russian].

    Google Scholar 

  • Fedonkin, M. A., 1985d, Precambrian metazoans: The problems of preservation, systematics and evolution, Philos. Trans. R. Soc. Lond. B 311:27–45.

    Article  Google Scholar 

  • Felsenstein, J., 1978, Cases in which parsimony or compatibility methods will be positively misleading, Syst. Zool. 27:401–410.

    Article  Google Scholar 

  • Felsenstein, J., 1982, Numerical methods for inferring evolutionary trees, Q. Rev. Biol. 57:379–404.

    Article  Google Scholar 

  • Felsenstein, J., 1988, Perils of molecular introspection, Nature 335:118.

    Article  Google Scholar 

  • Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., and Raff, R. A., 1988, Molecular phylogeny of the animal kingdom, Science 239:748–753.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W. M., and Margoliash, E., 1967, Construction of phylogenetic trees, Science 155:279–284.

    Article  CAS  PubMed  Google Scholar 

  • Gasshoff, M., 1981, Arthropodisierung als biomechanischer Prozess und die Entstehung der Tri-lobiten-Konstruktion, Palaeontol. Z. 55:219–235.

    Google Scholar 

  • Gehling, J. G., 1987, Earliest known echinoderm—A new Ediacaran fossil from the Pound Subgroup of South Australia, Alcheringa 11:337–345.

    Article  Google Scholar 

  • Glaessner, M. F., 1962, Precambrian fossils, Biol. Rev. 37:467–494.

    Google Scholar 

  • Glaessner, M. F., 1984, The Dawn of Animal Life: A Biohistorical Study, Cambridge University Press, Cambridge.

    Google Scholar 

  • Goldschmidt, R., 1940, The Material Basis of Evolution, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Goodman, M., Koop, B. F., Czelusniak, J., Weiss, M. L., and Slightom, J. L., 1984, The-η-globin gene: Its long evolutionary history in the β-globin gene family of mammals, J. Mol. Biol. 180:803–823.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich, E. S., 1945, The study of nephridia and genital ducts since 1895, Q. J. Microscop. Sci. 86:113–392.

    CAS  Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gray, J., 1968, Animal Locomotion, Weidenfeld and Nicolson, London.

    Google Scholar 

  • Gutmann, W. F., 1981, Relationships between invertebrate phyla based on functional-mechanical analysis of the hydrostatic skeleton, Am. Zool. 21:63–81.

    Google Scholar 

  • Hadzi, J., 1963, The Evolution of the Metazoa, Pergamon, Oxford.

    Google Scholar 

  • Haeckel, E., 1866, Generelle Morphologie der Organismen, Vol. 2. Georg Reimer, Berlin.

    Book  Google Scholar 

  • Hartman, W. D., 1963, A critique of the enterocele theory, in: The Lower Metazoa (E. C. Dougherty, ed.), University of California Press, Berkeley, pp. 55–77.

    Google Scholar 

  • Hou, X.-G., 1987a, Two new arthropods from Lower Cambrian, Chengjiang, eastern Yunnan, Acta Palaeontol. Sinica 26:236–256.

    Google Scholar 

  • Hou, X.-G., 1987b, Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan, Acta Palaeontol. Sinica 26:272–285.

    Google Scholar 

  • Hou, X.-G., and Chen, J.-Y., 1989, Early Cambrian tentacled worm-like animals Facivermis gen. nov. from Chengjiang, Yunnan, Acta Palaeontol. Sinica 28:32–41.

    Google Scholar 

  • Hou, X.-G., Chen, J.-Y., and Lu, H.-Z., 1989, Early Cambrian new arthropods from Chengjian, Yunnan, Acta Palaeontol. Sinica 28:42–57.

    Google Scholar 

  • Hyman, L. H., 1940-1959, The Invertebrates, Vols. 1-5, McGraw-Hill, New York.

    Google Scholar 

  • Jagersten, G., 1972, Evolution of the Metazoan Life Cycle, Academic Press, London.

    Google Scholar 

  • Jenkins, R. J. F., Ford, C. H., and Gehling, J. G., 1983, The Ediacara Member of the Rawnsley Quartzite: The context of the Ediacara assemblage (late Precambrian, Flinders Ranges), J. Geol. Soc. Aust. 30:101–119.

    Article  Google Scholar 

  • Kauffman, S. A., 1987, Self-organization, selective adaptation, and its limits: A pattern of inference in evolution and development, in: Neutrai Models in Biology (M. H. Nitecki and A. Hoffman, eds.), Oxford University Press, Oxford, pp. 56–89.

    Google Scholar 

  • Kluge, A. G., and Farris, S., 1969, Quantitative phyletics and the evolution of anurans, Syst. Zool. 18:1–32.

    Article  Google Scholar 

  • Kristensen, R. M., 1983, Loricifera, a new phylum with Aschelminthes characters from the meio-benthos, Z. Zool. Syst. Evolutionsforsch. 21:163–180.

    Article  Google Scholar 

  • Lake, J. A., 1988, Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences, Nature 331:184–186.

    Article  CAS  PubMed  Google Scholar 

  • Lake, J. A., 1989, Origin of the multicellular animals, in: The Hierarchy of Life (B. Fernholm, K. Bremer, and H. Jornvall, eds.), Elsevier, Amsterdam, pp. 273–278.

    Google Scholar 

  • Lang, A., 1903, Beitrage zu einer Trophocoltheorie, Jena Z. Naturwiss. 38:1–373.

    Google Scholar 

  • Lankester, E. R., 1874, Observations on the development of the pond snail (Lymnaea stagnalis), and on the early stages of other Mollusca, Q. J. Microscop. Sci. 14:365–391.

    Google Scholar 

  • Linnaeus, C., 1758, Systema Naturae, 10th ed., Laurentii Salvii, Holmiae [Facsimile edition, British Museum (Natural History) (1956)].

    Google Scholar 

  • Livanov, N. A., 1955, Paths of Evolution in the Animal World. Analysis of Organization of Principle of Phyla Multicellular Animals, Moscow.

    Google Scholar 

  • Lowenstam, H. A., and Margulis, L., 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons, Biosystems 12:27–41.

    Article  CAS  PubMed  Google Scholar 

  • Manton, S. M., 1977, The Arthropoda, Oxford University Press, Oxford.

    Google Scholar 

  • Manton, S. M., and Anderson, D. T., 1979, Polyphyly and the evolution of the arthropods, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Academic Press, New York, pp. 269–321.

    Google Scholar 

  • Marcus, E., 1958, On the evolution of the animal phyla, Q. Rev. Biol. 33:24–58.

    Article  Google Scholar 

  • Margulis, L., and Schwartz, K. V., 1982, Five Kingdoms; An Illustrated Guide to the Phyla of Life on Earth, Freeman, San Francisco.

    Google Scholar 

  • McKenna, M. C., 1987, Molecular and morphologic analysis of high-level mammalian interrelationships, in: Molecules and Morphology (C. Patterson, ed.), Cambridge University Press, Cambridge, pp. 55–93.

    Google Scholar 

  • McKinney, M. L., and McNamara, K. J., 1990, Heterochrony: The Evolution of Ontogeny, Plenum, New York.

    Google Scholar 

  • Meyer, E., 1890, Die Abstammung der Anneliden. Der Ursprung der Metamerie und die Bedeutung des Mesoderms, Biol. Zentralbl. 10:296–308.

    Google Scholar 

  • Narbonne, G. M., and Myrow, P., 1988, Trace fossil biostratigraphy in the Precambrian-Cambrian boundary interval, in: Trace Fossils, Small Shelly Fossils, and the Precambrian-Cambrian Boundary (E. Landing, G. M. Narbonne, and P. Myrow, eds.), New York State Museum Bulletin 463, pp. 72-76.

    Google Scholar 

  • Nielsen, C., 1985, Animal phylogeny in the light of the trochaea theory, Biol. J. Linn. Soc. 25:243–299.

    Article  Google Scholar 

  • Nielsen, C., Walker, W. F., Bode, H. R., Steele, R. E., Field, K. A., Olsen, G. J., Giovannoni, S. J., Raff, E. C., Pace, N. R., and Raff, R. A., 1989, Phylogeny and molecular data, Science 243:548–551.

    Google Scholar 

  • Novacek, M. J., 1986, The skull of lepticid insectivorans and the higher-level classification of eutherian mammals, Bull. Am. Museum Nat. Hist. 183:1–112.

    Google Scholar 

  • Novacek, M. J., and Wyss, A. R., 1986, Higher-level relationships of the recent eutherian orders: Morphological evidence, Cladistics 2:257–287.

    Article  Google Scholar 

  • Palij, V. M., Posti, E., and Fedonkin, M. A., 1979, Soft-bodied Metazoa and trace fossils of Vendian and Lower Cambrian, in: Upper Precambrian and Cambrian Paleontology of East-European Platform (B. M. Keller and A. Yu. Rozanov, eds.), USSR Academy of Sciences, Moscow, pp. 49–82 [in Russian].

    Google Scholar 

  • Pantin, C. F. A., 1950, Locomotion in British terrestrial nemertines and planarians: With a discussion on the identity of Rhynchodemus bilineatus (Mecnikow) in Britain and on the name Fasciola terrestris O. F. Müller, Proc. Linn. Soc. Lond. 162:23–37.

    Article  Google Scholar 

  • Parker, S. P. (ed.), 1982, Synopsis and Classification of Living Organisms, McGraw-Hill, New York.

    Google Scholar 

  • Ramskold, L., and Hou, X., 1991, New Early Cambrian animal and onychophoran affinities of enigmatic metazoans, Nature 351:225–228.

    Article  Google Scholar 

  • Remane, A., 1963, The enterocelic origin of the celom, in: The Lower Metazoa (E. C. Dougherty, ed.), University of California Press, Berkeley, pp. 78–90.

    Google Scholar 

  • Rieger, R., 1980, A new group of interstitial worms, Lobatocerebridae nov. fam. (Annelida) and its significance for metazoan phylogeny, Zoomorphologie 95:41–84.

    Article  Google Scholar 

  • Reiger, R. M., Tyler, S., Smith, J. P. S., III., and Rieger, G. E., 1990, Platyhelminthes: Turbellaria, in: Microscopic Anatomy of Invertebrates, Vol. 3 (F. W. Harrison and B. J. Bogitsh, eds.), Wiley-Liss, New York, pp. 7–140.

    Google Scholar 

  • Rowell, A. J., and Caruso, N. E., 1985, The evolutionary significance of Nisusia sulcata, an early articulate brachiopod, J. Paleontol. 59:1227–1242.

    Google Scholar 

  • Rozanov, A. Yu., 1986, Problematica of the Early Cambrian, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, eds.), Oxford University Press, Oxford, pp. 87–96.

    Google Scholar 

  • Ruiz, C., and Lindberg, D. R., 1989, A fossil record for trematodes: extent and potential uses, Lethaia 22:431–438.

    Article  Google Scholar 

  • Runnegar, B., 1982a, Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit, Alcheringa 6:223–239.

    Article  Google Scholar 

  • Runnegar, B., 1982b, The Cambrian explosion: Animals or fossils?, J. Geol. Soc. Aust. 29:395–411.

    Article  Google Scholar 

  • Salvini-Plawen, L. von, 1969, Solenogastres und Caudofoveata (Mollusca: Aculifera): Organization und phylogenetische Bedeutung, Malacologia 9:191–216.

    Google Scholar 

  • Salvini-Plawen, L. von, 1980, A reconsideration of systematics in the Mollusca (phylogeny and higher classification), Malacalogia 19:249–278.

    Google Scholar 

  • Salvini-Plawen, L. v., 1982, A paedomorphic origin of the oligomerous animals?, Zool. Scripta 11:77–81.

    Article  Google Scholar 

  • Sarvaas, A. E. du M., 1933, La Theorie du Coelome, Thesis, University of Utrecht.

    Google Scholar 

  • Sedgwick, A., 1984, On the origin of metameric segmentation and some other morphological questions, Q. J. Microscop. Sci. 24:43–82.

    Google Scholar 

  • Seilacher, A., 1956, Der Beginn des Kambriums als biologische Wende, Neues Jahrb. Geol. Palaeontol. 103:155–180.

    Google Scholar 

  • Seilacher, A., 1984, Late Precambrian and Early Cambrian Metazoa: Preservational or real extinctions?, in: Patterns of Change in Earth Evolution (H. D. Holland and A. F. Trendall, eds.), Springer-Verlag, Berlin, pp. 159–168.

    Chapter  Google Scholar 

  • Shoshani, J., 1986, Mammalian phylogeny: Comparison of morphological and molecular results, Mol. Biol. Evol. 3:222–242.

    CAS  PubMed  Google Scholar 

  • Signor, P. W., 1988, The Precambrian-Cambrian metazoan radiation: Significance of earliest Cambrian agglutinated skeletons, Geol. Soc. Am. Abstr. Progr. 20:A104.

    Google Scholar 

  • Simpson, G. G., 1944, Tempo and Mode in Evolution, Columbia University Press, New York.

    Google Scholar 

  • Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  • Snodgrass, R. E., 1938, Evolution of the Annelida, Onychophora and Arthropoda, Smithson. Misc. Collect. 97:1–159.

    Google Scholar 

  • Sprigg, R. C., 1947, Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia, Trans. R. Soc. S. Aust. 71:212–224.

    Google Scholar 

  • Stanley, G. D., and Stürmer, W., 1983, The first fossil ctenophore from the Lower Devonian of West Germany, Nature 303:518–520.

    Article  Google Scholar 

  • Stanley, S. M., 1979, Macroevolution, Pattern and Process, Freeman, San Francisco.

    Google Scholar 

  • Stasek, C. R., 1972, The molluscan framework, in: Chemical Zoology 7 (M. Florkin and B. J. Scheer, eds.), Academic Press, New York, pp. 1–44.

    Google Scholar 

  • Tiegs, O. W., and Manton, S. M., 1958, The evolution of the Arthropoda, Biol. Rev. 33:255–337.

    Article  Google Scholar 

  • Trueman, E. R., 1975, The Locomotion of Soft-Bodied Animals, Edward Arnold, London.

    Google Scholar 

  • Turbeville, J. M., 1990, Nemertinea, in: Microscopic Anatomy of Marine Invertebrates, Vol. 3 (F. W. Harrison and B. J. Bogitsh, eds.), Wiley-Liss, New York, pp. 285–328.

    Google Scholar 

  • Turbeville, J. M., and Ruppert, E. E., 1985, Comparative ultrastructure and the evolution of nemertines, Am. Zool. 25:53–71.

    Google Scholar 

  • Valentine, J. W., 1969, Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time, Palaeontology 12:684–709.

    Google Scholar 

  • Valentine, J. W., 1975, Adaptive strategy and the origin of grades and ground plans, Am. Zool. 15:391–404.

    Google Scholar 

  • Valentine, J. W., 1977, General patterns of metazoan evolution, in: Patterns of Evolution (A. Hallam, ed.), Elsevier, Amsterdam, pp. 27–57.

    Google Scholar 

  • Valentine, J. W., 1981, The lophophorate condition, in: Lophophorates (J. T. Dutro and R. S. Boardman, eds.), University of Tennessee Department of Geological Sciences, Studies in Geology, Vol. 5, pp. 190-204.

    Google Scholar 

  • Valentine, J. W., 1986, Fossil record of the origin of bauplane and its implications, in: Patterns and Processes in the History of Life (D. M. Raup and D. Jablonski, eds.), Springer-Verlag, Berlin, pp. 209–222.

    Chapter  Google Scholar 

  • Valentine, J. W., 1989, Bilaterians of the Precambrian-Cambrian transition and the Annelid-Arthropod relationship, Proc. Natl. Acad. Sci. USA 86:2272–2275.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, J. W., and Campbell, C. A., 1975, Genetic regulation and the fossil record, Am. Sci. 63:673–680.

    CAS  PubMed  Google Scholar 

  • Valentine, J. W., and Erwin, D. H., 1983, Patterns of diversification of higher taxa: A test of macroevolu-tionary paradigms, in: Modalities, rythmes et mecanismes de l’evolution biologique: Gradualism phyletique ou equilibres ponctues? (J. Chaline, ed.), Colloq. Int. CNRS 330:219–223.

    Google Scholar 

  • Valentine, J. W., and Erwin, D. H., 1987, Interpreting great developmental experiments: The fossil record, in: Development as an Evolutionary Process (R. A. Raff and E. C. Raff, eds.), Liss, New York, pp. 71–107.

    Google Scholar 

  • Vandebroek, G., 1952, La classification generale des Metazoaires superieurs et les recentes données embryologiques, Ann. Soc. Zool. Belg. 83:131–142.

    Google Scholar 

  • Whittington, H. B., 1979, Early arthropods, their appendages and relationships, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Academic Press, New York, pp. 253–268.

    Google Scholar 

  • Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microhiol. Rev. 51:221–271.

    CAS  Google Scholar 

  • Woese, C. R., Stackebrandt, E., and Ludwig, W., 1985, What are mycoplasmas: The relationship of tempo and mode in bacterial evolution, J. Molec. Evol. 21:305–316.

    Article  CAS  Google Scholar 

  • Wright, A. D., 1979, Brachiopod radiation, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Academic Press, New York, pp. 235–252.

    Google Scholar 

  • Wright, S., 1982a, Character change, speciation and higher taxa, Evolution 36:427–443.

    Article  Google Scholar 

  • Wright, S., 1982b, The shifting balance theory and macroevolution, Annu. Rev. Genet. 16:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Wyss, A. R., Novacek, M. J., and McKenna, M. C., 1987, Amino acid sequence versus morphological data and the interordinal relationships of mammals, Mol. Biol. Evol. 4:99–116.

    CAS  PubMed  Google Scholar 

  • Zimmer, R. L., 1964, Reproductive biology and development of Phoronida, Ph.D. thesis, University of Washington, Seattle, Washington.

    Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1965, Molecules as documents of evolutionary history, J. Theoret. Biol. 8:357–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valentine, J.W. (1992). The Macroevolution of Phyla. In: Lipps, J.H., Signor, P.W. (eds) Origin and Early Evolution of the Metazoa. Topics in Geobiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2427-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2427-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2429-2

  • Online ISBN: 978-1-4899-2427-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics