Skip to main content

Characteristics of Fuel Cell Systems

  • Chapter
Fuel Cell Systems

Abstract

Fuel cell power systems possess certain generic characteristics, which may make them favorable for future power production compared with devices based primarily on rotating machinery using thermomechanical processes. Many of these operational characteristics of fuel cell systems are superior to those of conventional power generators. The most important are their potentially outstanding advantages compared to those of other existing or anticipated technology, namely thermodynamic efficiency, part-load characteristics, response time, emissions (including chemical emissions, noise, thermal emissions and visual or esthetic effects), modularity, and siting flexibility. Other factors which will affect their future economic viability in respect to their competition are expected to be their lifetime, on-line availability, reliability, start-up and shutdown characteristics, control, power conditioning, safety, materials, multifuel ability, and finally the waste disposal of their materials on dismantling of the plant. In this chapter, fuel cell systems will be characterized with respect to these factors. Finally, their overall economics, which will be largely dictated by their effective capital cost and lifetimes, will be considered in general terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Crowe, Fuel Cells, A Survey (National Aeronautics and Space Administration, Washington, D.C., 1973), SP-5115.

    Google Scholar 

  2. D. Gidaspow, R. W. Lyczkowski, and B. S. Baker, U.S. patent No. 3,823,038 (1974).

    Google Scholar 

  3. R. Roberts, in The Primary Battery (G. W. Heise and N. C. Calhoun, eds.) (Wiley, New York, 1971), Ch. 9.

    Google Scholar 

  4. J. O’M. Bockris and A. J. Appleby, Energy 11, 95 (1986).

    Article  CAS  Google Scholar 

  5. A. J. Appleby and E. B. Yeager, Energy 11, 137 (1986).

    Article  CAS  Google Scholar 

  6. J. W. Gibbs, Trans. Connect. Acad. 2, 382 (1873).

    Google Scholar 

  7. Z. Rant, Forschung Ing.-Wesens 22, 36 (1956).

    Google Scholar 

  8. H. D. Baehr, Energie und Exergie (VDI Dusseldorf, Germany 1965).

    Google Scholar 

  9. A. J. Appleby, Energy 11, 13 (1986).

    Article  CAS  Google Scholar 

  10. L. M. Handley, Description of a Generic 11 MW Fuel Cell Power Plant for Utility Applications (Electric Power Research Institute, Palo Alto, CA, 1983), EM-3161.

    Google Scholar 

  11. B. E. Curry, National Fuel Cell Seminar Abstracts (Electric Power Research Institute, Palo Alto, CA, 1981), p. 13.

    Google Scholar 

  12. J. H. Horton, Proc. 25th Power Sources Symp. p. 92, 1972.

    Google Scholar 

  13. A. J. Appleby, in Fuel Cells, Trends in Research and Application (A. J. Appleby, ed.) (Hemisphere, New York, 1987), p. 19.

    Google Scholar 

  14. O. Lindstrom, in Ref. 13, p. 191.

    Google Scholar 

  15. A. J. Appleby, in Modern Aspects of Electrochemistry, Vol. 9 (B. E. Conway and J. O’M. Bockris, eds.) (Plenum, New York, 1974), p. 369.

    Chapter  Google Scholar 

  16. A. J. Appleby, in Comprehensive Treatise of Electrochemistry, Vol. 7 (B. E. Conway, J. O’M. Bockris, S. U. M. Khan, and R. E. White, eds.) (Plenum, New York, 1983), p. 173.

    Chapter  Google Scholar 

  17. E. W. Hall, L. M. Handley, and G. W. May, Capital Cost Assessment of Phosphoric Acid Fuel Cell Power Plants for Electric Utility Applications (Electric Power Research Institute, Palo Alto, CA, 1988), AP-5608.

    Google Scholar 

  18. A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989), pp. 613–616.

    Google Scholar 

  19. T. G. Benjamin, Handbook of Fuel Cell Performance (Institute of Gas Technology, Chicago, IL, 1980).

    Book  Google Scholar 

  20. J. T. Brown, Energy 11, 209 (1986).

    Article  CAS  Google Scholar 

  21. W. G. Parker, Fuel Cell Seminar Abstracts, 1988, p. 248.

    Google Scholar 

  22. M. Krumpelt, V. Minkov, J. P. Ackerman, and R. D. Pierce, Fuel Cell Power Plant Designs, A Review (U.S. Department of Energy, Washington D.C., 1985), DOE/CC/4994 1-1833.

    Google Scholar 

  23. J. R. Selman, Energy 11, 153 (1986).

    Article  CAS  Google Scholar 

  24. L. M. Handley and R. Cohen, Specification for Dispersed Fuel Cell Generator (Electric Power Research Institute, Palo Alto, CA, 1981), EM-2123.

    Google Scholar 

  25. Anon. (UTC Power Systems Div.), On-Site Fuel Cell Power Plant Technology Development Program (Gas Research Institute, Chicago, IL, 1983), 1982–1983 Annual Rep., GRI 82099; On-Site 40 kw Fuel Cell Development Program, (U.S. Department of Energy, Washington, D.C., 1985), DOE/NASA-0255-1 NASA CR-174988.

    Google Scholar 

  26. W. C. Racine and T. C. Londos, 40-kW On-Site Fuel Cell Field Test Summary Utilities Activities Report (Gas Research Institute, Chicago, IL, 1987), GRI 87/0205.

    Google Scholar 

  27. T. N. Veziroglu, Int. J. Hydrogen Energy 12, 99 (1987).

    Article  CAS  Google Scholar 

  28. B. Kileman, Global Warming, Chem. Eng. News Special Report March 13, 1989.

    Google Scholar 

  29. S. H. Schneider, Global Warming, Are We Entering The Greenhouse Century (Sierra Club Books, San Francisco, CA, 1989).

    Google Scholar 

  30. D. R. Inglis, Nuclear Energy: Its Physics And Its Social Challenge (Addison-Wesley, Reading, MA, 1973).

    Google Scholar 

  31. J. M. King, Proc. 8th Intersoc. Energy Eng. Conf, 1973, p. 111.

    Google Scholar 

  32. G. L. Johnson, Proc. Nat. Fuel Cell Seminar Abstracts, 1979, p. 38.

    Google Scholar 

  33. L. M. Handley, M. Kobayashi, and D. M. Rastler, Operational Experience with Tokyo Electric Power Company’s 4.5MW Fuel Cell Demonstration Plant (Electric Power Research Institute, Palo Alto, CA, 1986).

    Google Scholar 

  34. N. Itoh, T. Kimura, M. Ogawa, H. Kaneko, and H. Kawamura, Fuel Cell Seminar Abstracts, 1988, p. 226.

    Google Scholar 

  35. H. Harada and Y. Mori, Fuel Cell Seminar Abstracts, 1988, p. 18; Y. Yamamoto, S. Kaneko, and H. Takahashi, Fuel Cell, Seminar Abstracts, 1988, p. 25.

    Google Scholar 

  36. L. B. Lave, Proc. 6th. Intersoc. Energy Eng. Conf, p. 337, 1971.

    Google Scholar 

  37. Anon. (UTC Power Systems Div.), 4.5MW Fuel Cell Development Program (Electric Power Research Institute, Palo Alto, CA, 1984), EM3856-LD.

    Google Scholar 

  38. In Ref. 18, pp. 151-160.

    Google Scholar 

  39. Anon., Haldor-Topsøe Inc., Commercial Brochure (Electric Power Research Institute, Palo Alto, CA, 1986).

    Google Scholar 

  40. KTI Radiant Tube Reformer, U.S. Patent 4,692,306, September 8, 1987, KTI Corp.

    Google Scholar 

  41. S. Sato, IHI, Private Communication.

    Google Scholar 

  42. Y. Miyazaki, H. Okuyama, T. Kodama, A. Fukutome, and Y. Kurihara, in Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.) (The Electrochemical Society, Pennington, NJ, 1990), p. 50.

    Google Scholar 

  43. In Ref. 18, p. 615.

    Google Scholar 

  44. D. W. Boyd, O. E. Buckley, C. E. Clark, Jr., R. B. Fancher, and J. R. Selman, EPRI Roles in Fuel Cell Commercialization (Electric Power Research Institute, Palo Alto, CA, 1987), AP-5137.

    Google Scholar 

  45. F. J. Rohr, Proc. Workshop High Temperature Solid Oxide Fuel Cells (Brookhaven National Lab., 1977), p. 122.

    Google Scholar 

  46. In Ref. 18, p. 620.

    Google Scholar 

  47. R. Anahara, Fuji Electric Co., private communication, June 1986.

    Google Scholar 

  48. D. P. Gregory, A Hydrogen Energy System (American Gas Association, Washington D.C., 1973), L 21173.

    Google Scholar 

  49. A. J. Appleby, in Precious Metals 1986 (U. V. Rao, ed.) (International Precious Metals Institute, Allentown, PA, 1986), p. 1; Proc. 10th. IPMI Precious Metals Conf, p. 379, 1986.

    Google Scholar 

  50. L. J. Henson and S. B. Jackson, Contract TV 53900A, Final Report FCR-2948, Tennessee Valley Authority (April 1981); See A. J. Appleby, in Proc. Renewable Fuels and Adv. Power Sources for.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Appleby, A.J. (1993). Characteristics of Fuel Cell Systems. In: Blomen, L.J.M.J., Mugerwa, M.N. (eds) Fuel Cell Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2424-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2424-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2426-1

  • Online ISBN: 978-1-4899-2424-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics