Skip to main content

Electrochemistry of Fuel Cells

  • Chapter
Fuel Cell Systems

Abstract

As pointed out in Section 3.2, electrochemical energy converters principally utilize the chemical energy of fuels with a higher efficiency than heat engines. Most of the fuels used are hydrocarbons, so, directly or indirectly, natural gas-, oil-, or coal-based. The consequence of this statement is that fuel cells can contribute considerably to mitigate the greenhouse effect. Other advantages will be discussed thoroughly in the next chapters. We here confine ourselves to electrochemical aspects, though some overlap with other approaches is unavoidable. In Fig. 3.1, the working principle of an aqueous acid fuel cell is given.1–3 This simplified picture of how a fuel cell works is sufficient to explain the principle. It shows that at the anode hydrogen is oxidized to H+ ions and that at the cathode dioxygen is reduced, with the formation of water. Moreover, it also shows that gas-diffusion electrodes are essential for functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berger, ed. Handbook of Fuel Cell Technology (Prentice Hall, Englewood Cliffs, NJ, 1968).

    Google Scholar 

  2. A. McDougall, Fuel Cells (MacMillan, London, 1976).

    Google Scholar 

  3. B. V. Tilak, R. S. Yeo, and S. Srinivasan, in Comprehensive Treatise of Electrochemistry, Vol. 3 (J. O’M. Bockris et al., ed.) (Plenum, New York, 1981), Ch. 2.

    Google Scholar 

  4. G. H. J. Broers, TNO-Netherlands, File No. DA-91-591-EUC-1023 (1959).

    Google Scholar 

  5. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980).

    Google Scholar 

  6. R. E. White, J. O’M. Bockris, B. E. Conway, and E. Yeager, eds., Comprehensive Treatise of Electrochemistry, Vol. 8 (Plenum, New York, 1984).

    Google Scholar 

  7. E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, eds., Comprehensive Treatise of Electrochemistry, Vol. 9 (Plenum, New York, London, 1984).

    Google Scholar 

  8. K. Tomantschger, F. McClusky, L. Oporto, A. Reid, and K. Kordesch, J. Power Sources 18, 317 (1986).

    Article  CAS  Google Scholar 

  9. F. G. Will, J. Electrochem. Soc. 110, 145 (1963).

    Article  CAS  Google Scholar 

  10. D. T. Wasan, T. Schmidt, and B. S. Baker, Mass Transfer in Fuel Cells: I. Models for Porous Electrodes; Chem. Eng. Progr. Symp. Ser. 77, Vol. 63 (1967).

    Google Scholar 

  11. E. H. Camara and G. G. Wilson, eds., Fuel Cells: Technology Status and Applications, (Institute of Gas Technology, Chicago, 1982).

    Google Scholar 

  12. S. Srinivasan and H. D. Hurwitz, Electrochim. Acta 12, 495 (1967).

    Article  CAS  Google Scholar 

  13. J. Giner and C. Hunter, J. Electrochem. Soc. 116, 1124 (1969).

    Article  CAS  Google Scholar 

  14. C. Y. Yuh, Potential Relaxation and AC Impedance of Porous Electrodes, PhD. thesis (Illinois Institute of Technology, Chicago, 1985).

    Google Scholar 

  15. S. S. Penner, ed., Assessment of Research Needs for Advanced Fuel Cells (U.S. Department of Energy, 1985) DOE/ER/300.60-T1, with extensive literature citations.

    Google Scholar 

  16. F. T. Bacon, Electrochim. Acta 14, 569 (1969).

    Article  CAS  Google Scholar 

  17. K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells: A Handbook (U.S. Department of Energy, 1988), DOE/METC-88/6096; DE 88.01.0252, with extensive literature citations.

    Google Scholar 

  18. A. van der Putten, A. Elzing, W. Visscher, and E. Barendrecht, J. Electroanal. Chem. 221, 95 (1987).

    Article  Google Scholar 

  19. A. Damjanovic, M. A. Genshaw, and J. O’M. Bockris, J. Electrochem. Soc. 114, 1108 (1967).

    Google Scholar 

  20. H. S. Wroblowa, Y. C. Pan, and G. Razumney, J. Electroanal. Chem. 69, 195 (1976).

    Article  CAS  Google Scholar 

  21. A. J. Appleby and M. Savy, J. Electroanal. Chem. 92, 15 (1978).

    Article  CAS  Google Scholar 

  22. A. van der Putten, W. Visscher, and E. Barendrecht, J. Electroanal. Chem. 195, 63 (1985).

    Article  Google Scholar 

  23. M. R. Tarasevich, A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry, vol. 7 (B. E. Conway, ed.) (Plenum, New York, 1983), Ch. 6.

    Google Scholar 

  24. E. Yeager, Electrochim. Acta. 29, 1527 (1984).

    Article  CAS  Google Scholar 

  25. A. van der Putten, A. Elzing, W. Visscher, and E. Barendrecht, J. Electroanal. Chem. 205, 233 (1986).

    Article  Google Scholar 

  26. J. P. Collman, M. Marocco, P. Denisevich, C. Koval, and F. C. Anson, J. Electroanal. Chem. 101, 117 (1979).

    Article  CAS  Google Scholar 

  27. Extended Abstracts 88-2, Fall Meeting of the Electrochemical Society, Chicago, October 9-14, 1988, p. 73.

    Google Scholar 

  28. Fuel Cell Seminar Abstracts, October 23–26, 1988, Long Beach, CA; sponsored by the National Fuel Cell Coordinating Group.

    Google Scholar 

  29. A. Elzing, A. van der Putten, W. Visscher, and E. Barendrecht, J. Electroanal. Chem. 200, 313 (1986).

    Article  CAS  Google Scholar 

  30. S. Sarangapani, J. R. Akridge, and B. Schumm, eds., The Electrochemistry of Carbon (The Electrochemical Society, Princeton, NJ, 1984).

    Google Scholar 

  31. V. Jalan and E. J. Taylor, J. Electrochem. Soc. 130, 2299 (1983).

    Article  CAS  Google Scholar 

  32. T. Maoka, Electrochim. Acta. 33, 371, 379 (1988).

    Article  CAS  Google Scholar 

  33. P. N. Ross, J. Electrochem. Soc. 130, 882 (1983).

    Google Scholar 

  34. M. M. P. Janssen and J. Moolhuysen, Electrochimica Acta 21, 869 (1976).

    Article  CAS  Google Scholar 

  35. W. E. O’Grady, ed., The Electrocatalysis of Fuel Cell Reactions, Proceedings Vol. 79–2 (The Electrochemical Society, Princeton, NJ, 1979).

    Google Scholar 

  36. G. H. J. Broers, High Temperature Galvanic Fuel Cells, thesis (University of Amsterdam, The Netherlands, 1958).

    Google Scholar 

  37. P. G. P. Ang and A. F. Sammells, J. Electrochem. Soc. 127, 1287 (1980).

    Article  CAS  Google Scholar 

  38. J. Jewulski and L. Suski, J. Appl. Electrochem. 14, 135 (1984).

    Article  CAS  Google Scholar 

  39. A. J. Appleby and S. B. Nicholson, J. Electroanal. Chem. 53, 105 (1974).

    Article  CAS  Google Scholar 

  40. A. J. Appleby and S. B. Nicholson, J. Electroanal. Chem. 83, 309 (1977).

    Article  CAS  Google Scholar 

  41. A. J. Appleby and S. B. Nicholson, J. Electroanal. Chem. 112, 71 (1980).

    Article  CAS  Google Scholar 

  42. S. H. Lu, Ph.D. thesis (Illinois Institute of Technology, Chicago, 1985).

    Google Scholar 

  43. I. Uchida, T. Nishina, Y. Mugikura, and K. Itaya, J. Electroanal. Chem. 206, 229 (1986).

    Article  CAS  Google Scholar 

  44. I. Uchida, Y. Mugikura, T. Nishina, and K. Itaya, J. Electroanal. Chem. 206, 241 (1986).

    Article  CAS  Google Scholar 

  45. R. J. Selman, Energy 11, 153 (1986).

    Article  CAS  Google Scholar 

  46. T. G. Benjamin, E. H. Camara, and L. G. Marianowski, Handbook of Fuel Cell Performance (Institute of Gas Technology, U.S. Department of Energy, 1980).

    Google Scholar 

  47. L. G. Marianowski, Prog. Batt. Solar Cells 5, 283 (1984).

    CAS  Google Scholar 

  48. J. Jensen, ed., Solid State Protonic Conductors I for Fuel Cells and Sensors (Odense University Press, Odense, Denmark, 1982).

    Google Scholar 

  49. J. T. Kummer and D. G. Oei, J. Appl. Electrochem. 15, 619 (1985).

    Article  CAS  Google Scholar 

  50. R. W. Spillman, R. M. Spotnitz, and J. T. Lundquist, Jr., Chemtech 176 (1984).

    Google Scholar 

  51. E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Saràngapani, eds., Comprehensive Treatise of Electrochemistry, Vol. 6, (Plenum, New York, 1983), Ch. 5 especially.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barendrecht, E. (1993). Electrochemistry of Fuel Cells. In: Blomen, L.J.M.J., Mugerwa, M.N. (eds) Fuel Cell Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2424-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2424-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2426-1

  • Online ISBN: 978-1-4899-2424-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics