Skip to main content

Research, Development, and Demonstration of Molten Carbonate Fuel Cell Systems

  • Chapter
Fuel Cell Systems

Abstract

The aim of this chapter is to give an overview of the technology of the molten carbonate fuel cell (MCFC) and to assess the status of MCFC performance. The MCFC is generally considered a “second-generation” fuel cell, whose entry into the power generation market will follow that of the phosphoric acid fuel cell (PAFC), discussed in Chapter 8. In spite of the greater technical difficulties in its development, the MCFC has undeniable advantages over the PAFC, because of its higher electrical efficiency, the possibility of using natural gas without external reforming, and the high-grade waste heat generated. These characteristics allow a spectrum of applications varying from central power generation to industrial or commercial cogeneration. They are directly connected with the higher operating temperature (typically 650°C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. J. Broers, High Temperature Galvanic Fuel Cells, Doctoral thesis, University of Amsterdam, 1958.

    Google Scholar 

  2. C. A. Reiser and C. R. Schroll, Abstracts National Fuel Cell Seminar (Norfolk, VA, 1981), p. 144.

    Google Scholar 

  3. H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries (Wiley, New York, 1968), ch. 3, and 4.

    Google Scholar 

  4. J. R. Selman and H. C. Maru, in Advanced Molten Salt Chemistry (G. Mamantov and J. Braunstein, eds.), Vol. 4, (Plenum, NY, 1981), p. 159.

    Google Scholar 

  5. J. R. Selman and L. G. Marianowski, in Molten Salt Technology (D. G. Lovering, ed.) (Plenum, New York, 1982), p. 323.

    Google Scholar 

  6. A. J. Appleby and J. P. Ackerman, eds., Proc. DOE/ERPI Workshop on Molten Carbonate Fuel Cells EPRI WS-78-135, 1979.

    Google Scholar 

  7. J. R. Selman and T. D. Claar, eds., Molten Carbonate Fuel Cell Technology (The Electrochemical Society, Pennington, NJ, 1984), PV84-13.

    Google Scholar 

  8. J. R. Selman, Energy 11, 153 (1986).

    Article  CAS  Google Scholar 

  9. N. Q. Minh, J. Power Sources 24, 1–19 (1988); (b) Chemtech Jan., 32–37 (1991).

    Article  Google Scholar 

  10. A. Pigeaud, H. C. Maru, L. Paetsch, J. Doyon, and R. Bernard, in Proc. Symp. Porous Electrodes: Theory and Practice (H. C. Maru, T. Katan, and M. G. Klein, eds.), PV84-8 (The Electrochemical Society, Pennington, NJ, 1984), p. 398.

    Google Scholar 

  11. J. R. Selman, Energy 11, 153 (1986).

    Article  CAS  Google Scholar 

  12. H. C. Maru and B. S. Baker, Prog. Batt. Solar Cells 5, 264 (1984).

    CAS  Google Scholar 

  13. H. C. Maru, Quarterly Progress Report, DOE Project DE-AC03-76 (ET-11304) (Energy Research Corporation, Danbury, CT, 1985).

    Google Scholar 

  14. T. Murahashi, in Proc. 2nd Molten Carbonate Fuel Cell Symp., PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 100.

    Google Scholar 

  15. T. Murahashi, in Proc. 2nd Molten Carbonate Fuel Cell Symposium, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 100.

    Google Scholar 

  16. P. S. Patel, Assessment of a 6500-Btu/kWh Heat Rate Dispersed Generator, (Energy Research Corporation, Nov. 1983), EM-3307, Final Report, EPRI-EM-3307.

    Google Scholar 

  17. T. J. George and M. J. Mayfield, Fuel Cells: Technology Status Report, DOE/METC-90/0268, 1990.

    Google Scholar 

  18. S. H. Lu and J. R. Selman, in Proc. Symp. MCFC Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 385.

    Google Scholar 

  19. K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells, A Handbook DOE/METC-88/6096, 1988, p. 26.

    Google Scholar 

  20. L. A. H. Machielse, in Proc. Symp. Modeling Batteries and Fuel Cells (R. E. White, M. W. Verbrugee, and J. F. Stockel, eds.), PV91-10 (The Electrochemical Society, Pennington, NJ, 1991), p. 166.

    Google Scholar 

  21. B. S. Baker, in Proc Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 15.

    Google Scholar 

  22. S. N. Simons, R. B. King, and P. R. Prokopius, in Symp. Proc. Fuel Cells Technology: Status and Applications (E. H. Camara, ed.) (Institute of Gas Technology, Chicago, 1982), p. 45.

    Google Scholar 

  23. Development of Improved Molten Carbonate Fuel Cell Technology, Final Report Project RP-1085-4 to Electric Power Research Institute (United Technologies Corp., 1983), Fig. 5-10.

    Google Scholar 

  24. R. J. Boersma, Energiespectrum 14, 260 (1990).

    CAS  Google Scholar 

  25. H. C. Maru, L. Paetsch, and A. Pigeaud, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 20.

    Google Scholar 

  26. R. J. Petri and T. G. Benjamin, in Proc. 21st Intersoc. Energy Conversion Engineering Conf., Vol. 2 (American Chemical Society, Washington, D.C., 1986), p. 1156.

    Google Scholar 

  27. R. D. Pierce, in Fuel Cells: Technology Status and Applications (Institute of Gas Technology, Chicago, 1982), p. 67.

    Google Scholar 

  28. K. Kinoshita, in Proc. DOE/EPRI Workshop on Molten Carbonate Fuel Cells (EPRI-WS-78-135, 1979), p. 4.

    Google Scholar 

  29. H. Ishikawa, N. Kusunose, Y. Shundo, S. Maruyama, K. Koseki, and T. Nakanishi, Performance of Bench-Scale MC FC with Electrolyte Plates Made by Paper-Making Method, CRIEPI Report EW91001, 1991.

    Google Scholar 

  30. C. E. Baumgartner, V. J. DeCarlo, P. G. Glugla, and J. J. Grimaldi, J. Electrochem. Soc. 132, 57 (1985).

    Article  CAS  Google Scholar 

  31. P. G. Glugla and V. J. DeCarlo, J. Electrochem. Soc. 129, 1745 (1982).

    Article  CAS  Google Scholar 

  32. C. D. Iacovangelo and B. R. Karas, J. Electrochem. Soc, 133, 1395 (1986).

    Google Scholar 

  33. Development of Molten Carbonate Fuel Cell Power Plant, DOE/ET/17019-20, Final Report Contract DE-AC02-80ET 17019, (2 vols.) (General Electric Corp., Schenectady, NY, 1985).

    Google Scholar 

  34. L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).

    Google Scholar 

  35. H. C. Maru, A. Pigeaud, R. Chamberlin, and G. Wilemski, in Proc. Symp. Electrochemical Modeling of Battery, Fuel Cell and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.) (The Electrochemical Society, Pennington, NJ, 1986), p. 398.

    Google Scholar 

  36. H. R. Kunz, J. Electrochem. Soc. 134, 105 (1987).

    Article  CAS  Google Scholar 

  37. Y. Itoh, Y. Tonoike, Y. Akiyama, M. Nishioka, T. Saito, and N. Furukawa, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV 90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 169.

    Google Scholar 

  38. T. Saito, Y. Itoh, Y. Akiyama, K. Okudo, M. Nishioka, S. Murakami and N. Furukawa J. Power Sources 36, 529 (1991).

    Article  CAS  Google Scholar 

  39. R. D. Pierce, J. L. Smith, and R. B. Poeppel, Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 147.

    Google Scholar 

  40. L. J. Bregoli and H. R. Kunz, J. Electrochem. Soc. 129, 2711 (1982).

    Article  CAS  Google Scholar 

  41. C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 131, 2062 (1984).

    Article  CAS  Google Scholar 

  42. H. R. Kunz, L. J. Bregoli, and S. T. Szymanski, J. Electrochem. Soc. 131, 2815 (1984).

    Google Scholar 

  43. J. R. Selman, in Tutorial Lectures in Electrochemical Engineering and Technology (R. Alkire and T. Beck, eds.), A.I.Ch.E. Symp. Ser. 204, Vol. 77, 138 (1981).

    Google Scholar 

  44. C. Y. Yuh and J. R. Selman, J. Electrochemical Soc. 138, 3542 (1991).

    Google Scholar 

  45. S. Takashima, K. Ohtsuka, N. Kobayashi, and H. Fujimura, in Proc, Second Int. Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 378.

    Google Scholar 

  46. G. Wilemski and T. L. Wolf, in Proc. Symp. Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.), PV86-12 (The Electrochemical Society, Pennington, NJ, 1986), p. 334.

    Google Scholar 

  47. J. R. Huff, in 1986 Fuel Cell Seminar (Tucson, AZ).

    Google Scholar 

  48. H. C. Maru (ERC), private communication, 1985.

    Google Scholar 

  49. H. R. Kunz and L. A. Murphy, in Proc. Symp. Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.), PV86-12 (The Electrochemical Society, Pennington, NJ, 1986), 395.

    Google Scholar 

  50. B. S. Baker, in Proc. Symp. MCFC Technology (J. R. Selman and T. D. Claar, eds), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 15.

    Google Scholar 

  51. Y. Mugikura, T. Abe, T. Watanabe, and Y. Izaki, Development of a Correlation Equation for the Performance of MCFC CRIEPI-EW91002, 1991.

    Google Scholar 

  52. E. J. Cairns and A. D. Tevebaugh, J. Chem. Eng. Data 9, 453 (1964); (b) A. Pigeuad and J. Klinger, Study of the Effects of Soots, Paniculate and Other Contaminants on Molten Carbonate Fuel Cells Fueled by Coal Gas, Final report to U.S. DOE under contract no. DE-AC21-84MC21154, 1987.

    Article  CAS  Google Scholar 

  53. Development of Improved Molten Carbonate Fuel Cell Technology, Final Report to Electric Power Research Institute (United Technologies Corp., 1983), EPRI-RP-1085.

    Google Scholar 

  54. G. H. J. Broers and B. W. Treijtel, Adv. Energy Conver. 5, 365 (1965).

    Article  CAS  Google Scholar 

  55. B. S. Baker, S. Gionfriddo, A. Leonida, H. Maru, and P. Patel, Internal Reforming Natural Gas Fueled Carbonate Fuel Cell Stack, Final Report to Gas Research Institute (Energy Research Corporation, 1984), GRI Contract 5081-244-0545.

    Google Scholar 

  56. K. Ota, S. Mitsushima, K. Kato, and N. Kamiya, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 318.

    Google Scholar 

  57. A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989), p. 560.

    Google Scholar 

  58. L. G. Marianowski, private communication (Institute of Gas Technology, 1984).

    Google Scholar 

  59. D. A. Shores and P. Singh, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 271.

    Google Scholar 

  60. C. Y. Yuh, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV90-16 (The Electrochemical Society Inc., Pennington, NJ, 1990), p. 368.

    Google Scholar 

  61. R. A. Donado, L. G. Marianowski, H. C. Maru, and J. R. Selman, J. Electrochem. Soc. 131, 2535 (1984).

    Article  CAS  Google Scholar 

  62. S. Sato, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, D. A. Shores, H. C. Maru, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 137.

    Google Scholar 

  63. K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells, A Handbook (DOE/METC-88/6096, May 1988), p. 78.

    Google Scholar 

  64. G. L. Anderson and P. C. Garrigan, in Proc. Symp Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 299.

    Google Scholar 

  65. A. Pigeaud, C. Y. Yuh, and S. F. Hon, in Proc. First Ann. Fuel Cells Contributors Rev. Meeting (W. J. Huber, ed.) DOE/METC-89/6105, 1989, p. 214.

    Google Scholar 

  66. W. M. Vogel and S. W. Smith, J. Electrochem. Soc. 129, 1441 (1982).

    Article  CAS  Google Scholar 

  67. S. W. Smith, H. R. Kunz, W. M. Vogel, and S. J. Szymanski, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 246.

    Google Scholar 

  68. L. G. Marianowski, Progr. Batt. Solar Cells 5, 283 (1984).

    CAS  Google Scholar 

  69. R. J. Remick, Effects of H 2 S on Molten Carbonate Fuel Cells, Final report, (Institute of Gas Technology, Chicago, May 1986), DOE/MC/20212-2039.

    Google Scholar 

  70. R. J. Remick, Effects of H 2 S on Molten Carbonate Fuel Cells, Final Report, section 3, (Institute of Gas Technology, Chicago, May 1986), DOE/MC/20212-2039.

    Google Scholar 

  71. R. J. Remick, J. R. Jewulski, T. L. Osif, and R. Donelsen, Contaminant Resistant Molten Carbonate Fuel Cell, Final Report, (Institute of Gas Technology, Chicago, 1988), Contract DE-AC21-86MC23023.

    Google Scholar 

  72. R. J. Remick, T. L. Osif, and M. G. Lawson, Sulfur-Tolerant Anode Materials, Final report, (Institute of Gas Technology, Chicago, 1986), Contract DE-AC21-86MC23267.

    Google Scholar 

  73. S. H. Lu, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 251.

    Google Scholar 

  74. A. Pigeaud, in Proc. Sixth Ann. Contractors Meeting on Contaminant Control in Coal-Derived Gas Streams (K. E. Markel and D. C. Cicero, eds.), DOE/METC-86/6042, 1986.

    Google Scholar 

  75. A. Pigeaud, Progress Report by Energy Research Corporation to U.S. Department of Energy, Contract DE-AC21-84MC21154 (Morgantown, WV, 1987).

    Google Scholar 

  76. Fuel Cell Research on Second-Generation Molten Carbonate Systems, Project 9105, Final technical report (Institute of Gas Technology, Chicago, 1978), SAN-1735-4.

    Google Scholar 

  77. A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  78. I. Uchida, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 206.

    Google Scholar 

  79. J. R. Selman, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 187.

    Google Scholar 

  80. C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 131, 2062 (1984).

    Article  CAS  Google Scholar 

  81. C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 139, 1373 (1992).

    Article  CAS  Google Scholar 

  82. G. L. Lee, Dynamic Analysis of MCFC Porous Electrodes, thesis (Illinois Institute of Technology, Chicago, May 1992).

    Google Scholar 

  83. C. Y. Yuh and A. Pigeaud, Determination of Optimum Electrolyte Composition for Molten Carbonate Fuel Cells, Final report (Energy Research Corporation, Danbury, CT, 1989), DOE/MC/23264-2756.

    Google Scholar 

  84. K. Ota, B. Kim, S. Asano, H. Yoshitake, and N. Kamiya, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 165.

    Google Scholar 

  85. K. Tanimoto, Y. Miyazaki, M. Yanagida, S. Tanase, T. Kojima, H. Okuyama, and T. Kodama, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 357.

    Google Scholar 

  86. K. Tanimoto, Y. Miyazaki, M. Yanagida, S. Tanse, T. Kojima, N. Ohtori, H. Okuyama, and T. Kodama, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 185.

    Google Scholar 

  87. L. G. Marianowski, private communication (Institute of Gas Technology, Chicago, 1991).

    Google Scholar 

  88. L. G. Marianowski and J. B. O’Sullivan, Status of MCFC Technology (8th Ann. Energy Technology Conf. Exp., Washington D.C., 1981).

    Google Scholar 

  89. E. T. Ong and T. D. Claar, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 54.

    Google Scholar 

  90. H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.

    Google Scholar 

  91. H. Urushibata and T. Murahashi, in Proc. 32nd Battery Symp. (Kyoto, Japan 1991), p. 17.

    Google Scholar 

  92. M. C. Williams and T. J. George, in Proc. 26th IECEC, Am. Nucl. Soc. (LaGrange Park, IL, 1991), p. 577.

    Google Scholar 

  93. H. R. Kunz and J. W. Pandolfo, J. Electrochem. Soc. 138, 1549 (1992).

    Article  Google Scholar 

  94. R. J. Boersma, Energie Spectrum 10, 260 (1990).

    Google Scholar 

  95. J. M. King, A. P. Meyer, C. A. Reiser, and C. R. Schroll, Molten Carbonate Fuel Cell Verification and Scale-Up (EPRI, Palo Alto, CA, 1985), EM-4129.

    Google Scholar 

  96. S. Sato, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.) PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 137.

    Google Scholar 

  97. L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).

    Google Scholar 

  98. M. Ohtsubo, Y. Kato, N. Zaima, S. Kasa, T. Shima, and A. Tezuka, IH1 Eng. Rev. 24, 90 (1991).

    CAS  Google Scholar 

  99. R. J. Boersma, L. A. H. Machielse, and R. Ijpelaan, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 255.

    Google Scholar 

  100. L. A. H. Machielse, R. J. Boersma, C. Croon, W. M. A. Klerks, and G. Rietveld, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 269.

    Google Scholar 

  101. M. Hosaka, Y. Yamamasu, M. Tooi, N. Zaima, and T. Matsuyama, IH1 Eng. Rev. 31, 414 (1991).

    CAS  Google Scholar 

  102. S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.

    Google Scholar 

  103. A. J. Appleby and J. R. Selman, in Electrochemical Hydrogen Technologies (H. Wendt, ed.) (Elsevier, New York, 1990), p. 456.

    Google Scholar 

  104. M. Ohtsubo, Y. Kato, N. Zaima, S. Kasa, T. Shima, and A. Tezuka, IHI Eng. Rev. 1A, 90 (1991).

    Google Scholar 

  105. M. Koga, T. Kamata, S. Kawakami, and K. Tanigawa, IHI Eng. Rev. 31, 421 (1991).

    CAS  Google Scholar 

  106. L. A. H. Machielse, R. J. Boersma, C. Croon, W. M. A. Klerks, and G. Rietveld, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 269.

    Google Scholar 

  107. Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 161.

    Google Scholar 

  108. E. J. Vesely, Corrosion of Materials in Molten Carbonate Fuel Cells, Final report DE-AC21-86MC23265 (HT Research Institute, Chicago, 1990).

    Google Scholar 

  109. Y. Miyazaki, M. Yanagida, K. Tanomoto, S. Tanase, T. Kodama, H. Itoh, C. Nagai, and K. Morimoto, in Abstracts 1988 Fuel Cell Seminar, p. 304.

    Google Scholar 

  110. S. van der Molen, private communication (ECN, Petten, Netherlands, 1991).

    Google Scholar 

  111. T. J. George and M. J. Mayfield, Fuel Cells, Technology status report, DOE/METC-90/0268, 1990.

    Google Scholar 

  112. H. C. Maru, M. Farooque, and A. Pigeaud, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 121.

    Google Scholar 

  113. Proc. 3rd Ann. Fuel Cells Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991).

    Google Scholar 

  114. A. Suzuki, M. Tooi, M. Hosaka, T. Matsuyama, Y. Masuda, T. Nakane, and T. Osato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 273.

    Google Scholar 

  115. Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 161.

    Google Scholar 

  116. S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.

    Google Scholar 

  117. Research and Development on Fuel Cell Power Generation Technology, FY 1990 annual report (NEDO, Tokyo, Japan, 1991), p. 81.

    Google Scholar 

  118. H. Ozu, T. Akasaka, K. Nakagawa, H. Tateishi, and K. Tada, in Proc. 32nd Battery Symp. (Japan, 1991), p. 25.

    Google Scholar 

  119. T. Nishimura, K. Sato, and T. Murahashi, in Proc. 32nd Battery Symp. (Japan, 1991), p. 15.

    Google Scholar 

  120. 119_T. Kakihara, C. Shindou, M. Koga, and Y. Yamamasu, in Proc. 32nd Battery Symp. (Japan, 1991), p. 119.

    Google Scholar 

  121. L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).

    Google Scholar 

  122. R. J. Boersma, Energie Spectrum 10, 260 (1990).

    Google Scholar 

  123. M. Yamamoto and S. Takahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 181.

    Google Scholar 

  124. T. Watanabe, M. Koga, and S. Morishima, in Abstracts 1988 Fuel Cell Seminar (Long Beach, CA, 1988), p. 56.

    Google Scholar 

  125. T. Watanabe, T. Hirata, and M. Mizusawa, IHI Eng. Rev. 31, 430 (1991).

    CAS  Google Scholar 

  126. S. Takashima, K. Ohtsuka, N. Kobayashi, and H. Fujimura, in Proc. 2nd Molten Carbonate Fuel Cell Symp, PV90-16 (The Electrochemial Society, Pennington, NJ, 1990), p. 378.

    Google Scholar 

  127. N. Kobayashi, H. Fujimura, and K. Ohtsuka, JSMA Intn. J. Ser. II 32, 420 (1989).

    CAS  Google Scholar 

  128. T. Tanaka, T. Murahashi, and T. Nishimura, in Proc. 23rd Intersoc. Energy Conv. Eng. Conf, 1988, p. 245.

    Google Scholar 

  129. T. Tanaka, M. Matsumura, Y. Gonjio, C. Hirai, T. Okada, and M. Miyazaki, in Proc. 25th Intersoc. Energy Conv. Eng. Conf, 1990, p. 201.

    Google Scholar 

  130. A. J. Appleby, Ann. Rev. Energy 267 (1988).

    Google Scholar 

  131. E. H. Camara and E. T. Ong, National Fuel Cell Seminar Abstracts, 1983, p. 46.

    Google Scholar 

  132. T. Tanaka, M. Matsumura, T. Gonjo, M. Miyazaki, A. Sasaki, K. Sato, H. Urushibata, and T. Murahashi, in Proc. 26th Intersoc. Energy Conv. Eng. Conf, 1991, p. 583.

    Google Scholar 

  133. M. Matsumura, Y. Gonjyo, C. Hirai, and T. Tanaka, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 247.

    Google Scholar 

  134. T. Okada, H. Ide, M. Miyazaki, T. Tanaka, S. Narita, and J. Ohtsuki, in Proc. 25th Intersoc. Energy Conv. Eng. Conf, 1990, p. 207.

    Google Scholar 

  135. J. Ohtsuki, A. Kusunoki, T. Murahashi, T. Tanaka, and E. Nishiyama, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 251.

    Google Scholar 

  136. H. Ide, T. Okada, M. Miyazaki, T. Tanaka, and J. Ohtsuki, Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 19.

    Google Scholar 

  137. H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 145.

    Google Scholar 

  138. H. C. Maru, private communication (Energy Research Corporation, 1992).

    Google Scholar 

  139. C. Hirai, M. Matsumura, and T. Tanaka, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 21.

    Google Scholar 

  140. M. N. Mugerwa, L. J. M. J. Blomen, and K. G. Staller, Design Optimisation and Environmental Aspects of Fuel Cell Systems (Report to PEO, Utrecht, Netherlands, 19.65-010.10 (KTI BV, Zoetermeer, Netherlands, 1988).

    Google Scholar 

  141. H. C. Healy, in Proc. First Ann. Fuel Cell Contractors Rev. Mtg (W. H. Huber, ed.), DOE/METC-89/6105 1989, p. 112.

    Google Scholar 

  142. M. Farooque, G. Steinfeld, H. Maru, S. Kremenik, and G. McCleary, in Proc. 25th Intersoc. Energy Conv. Eng. Conf., 1990, p. 207.

    Google Scholar 

  143. K. A. Trimble, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 36.

    Google Scholar 

  144. E. J. Daniels, C. B. Dennis, M. Krumpelt, and V. Minkov, in Abstracts 1988 Fuel Cell Seminar, p. 41.

    Google Scholar 

  145. V. Minkov, E. Daniels, C. Dennis, and M. Krumpelt, Abstracts 1986 Fuel Cell Seminar (Tucson, 1986).

    Google Scholar 

  146. K. Kinoshita, F. P. McLarnon, and E. J. Cairns, Fuel Cells: A Handbook DOE/METC-88/6096, p. 127ff.

    Google Scholar 

  147. M. Ogoshi, T. Yoshida, K. Mochizuki, T. Inoue, M. Tanaka, S. Ohmoto, and T. Ishikawa, IHI Eng. Rev. 31, 435 (1991).

    Google Scholar 

  148. L. J. Christiansen and K. Aasberg-Petersen, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 231.

    Google Scholar 

  149. M. Ogoshi, T. Shimizu, S. Sato, T. Matsuyama, H. Saito, T. Abe, T. Watanabe, Y. Izaki, and Y. Mugikura, IHI Eng. Rev. 24, 1 (1991).

    Google Scholar 

  150. Y. Izaki, T. Watanabe, Y. Mugikura, H. Kinoshita, E. Kouda, T. Abe, T. Matsuyama, T. Shimizu, and S. Sato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 243.

    Google Scholar 

  151. B. S. Baker and H. G. Ghezel-Ayagh, U.S. patent 4,532,192 (July 30, 1985).

    Google Scholar 

  152. M. P. Kang and J. Winnick, J. Appl. Electrochem. 15, 431 (1985).

    Article  CAS  Google Scholar 

  153. T. Watanabe, E. Koda, Y. Mugikura, and Y. Izaki, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 113.

    Google Scholar 

  154. Y. Mugikura, T. Abe, T. Watanabe, Y. Izaki, E. Koda, and H. Kinoshita, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 115.

    Google Scholar 

  155. Molten Carbonate Fuel Cell System Verification and Scale-Up, Project 1273-1 final report, (United Technologies Corp., S. Windsor, CT, 1985), EPRI EM-4129.

    Google Scholar 

  156. H. R. Kunz and L. J. Bregoli, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 157.

    Google Scholar 

  157. H. R. Kunz, J. Electrochem. Soc. 134, 105 (1987).

    Article  CAS  Google Scholar 

  158. S. Kuroe, M. Takeuchi, S. Nishimura, and K. Ohtsuka, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 205.

    Google Scholar 

  159. In Proc. 3rd Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991, p. 444.

    Google Scholar 

  160. P. Grimes, R. Bellows, and M. Zahn, in Electrochemical Cell Design (R. E. White, ed.) (Plenum, New York, 1984).

    Google Scholar 

  161. P. Grimes and R. Bellows, in Electrochemical Cell Design (R. E. White, ed.) (Plenum, New York; 1984), pp. 277–292.

    Chapter  Google Scholar 

  162. C. Y. Yuh and A. Pigeaud, Determination of Optimum Electrolyte Composition for Molten Carbonate Fuel Cells (Energy Research Corp., Danbury, CT, 1989), DOE/MC/23264-2756.

    Google Scholar 

  163. H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 145 (Fig. 3).

    Google Scholar 

  164. H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.

    Google Scholar 

  165. Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 161.

    Google Scholar 

  166. C. Hirai, M. Matsumura, and T. Tanaka, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 21.

    Google Scholar 

  167. M. Matsumura, Y. Gonjyo, C. Hirai, and T. Tanaka, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 247.

    Google Scholar 

  168. F. Gmeindl, in Proc. 21st Intersoc. Energy Conv. Eng. Conf, Vol. 2 (American Chemical Society, Washington, D.C., 1986), p. 1129, Fig. 3.

    Google Scholar 

  169. W. H. Johnson, in Proc. Second Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-90/6112, 1990, p. 66.

    Google Scholar 

  170. In Proc. 3rd Annual Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991, p. 444.

    Google Scholar 

  171. H. C. Healy, W. H. Johnson, and C. A. Reiser, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 261.

    Google Scholar 

  172. W. H. Johnson, in Froc. First Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-89/6105, 1989, p. 105.

    Google Scholar 

  173. H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 145 (Fig. 3).

    Google Scholar 

  174. L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochm., Montreux, Switzerland, 1991).

    Google Scholar 

  175. A. Suzuki, M. Tooi, M. Hosaka, T. Matsuyama, Y. Masuda, T. Nakane, and T. Osato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 273.

    Google Scholar 

  176. S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.

    Google Scholar 

  177. T. Murahashi, private communication (Mitsubishi Electric Co., 1992).

    Google Scholar 

  178. Y. Aoyagi, T. Hashimoto, T. Nishimoto, A. Saiai, Y. Miyake, T. Nakajima, K. Harima, T. Saitoh, H. Yanaru, and H. Fukuyama, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 235.

    Google Scholar 

  179. H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.

    Google Scholar 

  180. L. Plomp, J. B. J. Veldhuis, E. F. Sitters, F. P. F. van Berkel, and S. B. van der Molen, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 157.

    Google Scholar 

  181. M. Mayfield, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992).

    Google Scholar 

  182. E. A. Gillis, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 17.

    Google Scholar 

  183. M. P. Whelan, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 21.

    Google Scholar 

  184. K. Hirose, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 11.

    Google Scholar 

  185. P. Zegers, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selman, J.R. (1993). Research, Development, and Demonstration of Molten Carbonate Fuel Cell Systems. In: Blomen, L.J.M.J., Mugerwa, M.N. (eds) Fuel Cell Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2424-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2424-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2426-1

  • Online ISBN: 978-1-4899-2424-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics