Skip to main content

Mechanisms for the Anticoagulant Effects of Synthetic Antithrombins

  • Chapter
The Design of Synthetic Inhibitors of Thrombin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 340))

Summary

The important roles of thrombin in the development and propagation of thrombosis are well recognized. In addition to being the enzyme for clotting fibrinogen (the major protein component of blood clots), thrombin accelerates its own generation by activating factor V, factor VIII, factor XI and platelets. It accelerates the stabilization of clots by activating factor XIII to factor XIIIa, the enzyme which crosslinks fibrin. There are probably two major pathways for regulating the availability of thrombin in vivo: inactivation of thrombin (by antithrombin III/vessel wall heparan sulfate and perhaps by other endogenous antithrombins) and the inactivation of factor Va and factor VIIIa by activated protein C. Factor Va and factor VIIIa accelerate the production of thrombin. However, when thrombin becomes bound to fibrin (in clots or possibly on cell surfaces), the ability of antithrombin III/heparin to inactivate thrombin is then reduced significantly. Impairment by fibrin of thrombin inhibition by antithrombin III may account in part for the inability of unfractionated heparin to prevent post-operative deep vein thrombosis in up to 20% of patients who undergo major elective orthopaedic surgery, and may also explain the need for oral anticoagulants after unfractionated and low molecular weight heparins are used to initiate the treatment of established deep vein thrombi. The ineffectiveness of the antithrombin III/heparin pathway for inhibiting thrombin under some circumstances has been a contributory factor for the development, evaluation and identification of other inhibitors of thrombin which are more able than antithrombin III/heparin to inactivate thrombin when the enzyme is bound to fibrin. The focus of this review is to detail how these synthetic agents, by directly or indirectly inactivating thrombin, can also effectively inhibit prothrombin activation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Lane, I.R. MacGregor, R. Michalski, and V.V. Kakkar, Anticoagulant activities of four unfractionated and fractionated heparins, Thromb. Res. 12: 257 (1978).

    CAS  Google Scholar 

  2. F.A. Ofosu, and T.W. Barrowcliffe, Mechanisms of action of low molecular weight heparin and heparinoids, Balliere’s Clinical Haematology 3: 505 (1990).

    Article  CAS  Google Scholar 

  3. F.A. Fernandez, M.R. Buchanan, J. Hirsh, J.W. Fenton II, and F.A. Ofosu, Catalysis of thrombin inhibition provides an index for estimating antithrombotic potential of glycosaminoglycans in rabbits, Thromb. Haemostas. 57: 286 (1987).

    CAS  Google Scholar 

  4. F.A. Ofosu, M.R. Buchanan, N. Anvari, L.M. Smith, and M.A. Blajchman, Plasma anticoagulant mechanism of heparin, heparan sulphate and dermatan sulphate, Ann. N.Y. Acad. Sci. 556: 123 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. J. Bogaty-Yver, and M. Samama, Thrombin-antithrombin III complexes for the detection of postoperative hypercoagulable state in surgical patients receiving heparin prophylaxis, Thromb. Haemostas. 61: 538 (1989).

    CAS  Google Scholar 

  6. J.A. Hoeck, M.T. Normohamed, J.W. ten Cate, H.R. Buller, H.C. Knipscheer, H.I. Hamelynck, R.I. Marti, and Stark. Thrombin-antithrombin III complexes in the prediction of deep vein thrombosis following total hip replacement, Thromb. Haemostas. 62: 1050 (1989).

    Google Scholar 

  7. F.A. Ofosu, Prophylactically effective doses of Enoxaparin and heparin inhibit prothrombin activation, in: Heparin and Related Polysaccharides, D.A. Lane, and U. Lindahl, ed. Plenum Press pp. 231–236 (1992).

    Google Scholar 

  8. V.V. Kakkar, and W.J.G. Murray, Anticoagulant effect of two types of low molecular weight heparin administered subcutaneously, Br. J. Surg. 72: 786 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. P. Berquist, U. Hedner, E. Sjorin, and E. Holmer, Efficacy and safety of low molecular weight heparin (CY216) in preventing postoperative venous thromboembolism: a cooperative study, Thromb. Res, 32: 381 (1983).

    Google Scholar 

  10. M. Holler, U. Schoch, P. Buchanan, F. Largiaden, A. von Felton, P.G. Frick, Low molecular weight heparin (KABI 2165) as thromboprophylaxis in elective visceral surgery. A randomized double blind study versus unfractionated heparin, Thromb. Haemostas. 56: 243 (1986).

    Google Scholar 

  11. A.G.G. Turpie, M.N. Levine, J. Hirsh, C.J. Carter, R.M. Jay, P.J. Powers, M. Andrew, R.P. Hull, and M. Gent, A randomized controlled trial of PK 10169 low molecular weight heparin for the prevention of deep vein thrombosis in patients undergoing elective hip surgery, N. Engl. J. Med. 315: 925 (1987).

    Article  Google Scholar 

  12. A. Planes, N. Vochelle, J. Ferry, D. Pryzrowski, J. Clerc, M. Fayola, M. Planes, Enoxaparine low molecular weight heparin: its use in the prevention of deep vein thrombosis following total hip replacement, Haemostasis 16: 152 (1986).

    PubMed  CAS  Google Scholar 

  13. R.P. Hull, T. Delorme, E. Genton, J. Hirsh, M. Gent, D. Sackett, P. McLaughlin, and P. Armstrong, Warfarin sodium versus low-dose heparin in the long term treatment of venous thrombosis, N. Engl. J. Med. 301: 855 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. J.R. Leclerc, W. Geerts, L. Desjardins, F. Jobin, F. Laroche, F. Delorme, S. Haviernick, S. Atkinson, and J. Bourgouin, Prevention of deep vein thrombosis after major knee surgery. A randomized, double-blind trial comparing a low molecular weight heparin fragment (Enoxaparin) with placebo, Thromb. Haemostas. 67: 417 (1992).

    CAS  Google Scholar 

  15. C.I. Lagerstedt, C.G. Olsson, B.O. Fagher, B.W. Oquist, and U. Albrechtsson, Need for long-term anticoagulation in symptomatic calf vein thrombosis, Lancet ii 515 (1985).

    Google Scholar 

  16. W. Coon, and P. Willis, Recurrence of venous thromboembolism, Surgery 73: 823 (1973).

    PubMed  CAS  Google Scholar 

  17. J. Van Ryn-McKenna, F.A. Ofosu, E. Grey, J. Hirsh, and M.R. Buchanan, Effects of dermatan sulphate and heparin on inhibition of thrombus growth in vivo, Ann. N.Y. Acad. Sci. 556: 304 (1989).

    Article  PubMed  Google Scholar 

  18. J.L. Okwusidi, M. Falcone, J. Van Ryn-McKenna, J. Hirsh, F.A. Ofosu, and M.R. Buchanan, Fibrin moderates the catalytic action of heparin but not that of dermatan sulphate on thrombin inhibition in human plasma, Thromb. Haemorrh. Dis. 1: 77 (1990).

    Google Scholar 

  19. P.J. Hogg, and C.M. Jackson, Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: implications for heparin efficacy. Proc. Natl. Acad. Sci. (USA) 86: 3619 (1989).

    Article  CAS  Google Scholar 

  20. P.J. Hogg, and C.M. Jackson, Heparin promotes the binding of thrombin to fibrin polymer. Quantitative characterization of a thrombin-fibrin polymer - heparin ternary complex, J. Biol. Chem. 265: 245 (1990).

    Google Scholar 

  21. J.I. Weitz, M. Huboda, D. Massel, J. Maraganore, and J. Hirsh, J. Clot-bound thrombin is protected from heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibition, J. Clin. Invest. 86: 385 (1990).

    CAS  Google Scholar 

  22. J.L. Okwusidi, N. Anvari, M. Kulcycky, M.A. Blajchman, M.R. Buchanan, and F.A. Ofosu, J. Lab. Clin. Med. 117: 359 (1991).

    PubMed  CAS  Google Scholar 

  23. D.E. Bagdy, E. Barabas, L. Graf, T.E. Peterson, and S. Magnusson, Hirudin, Methods Enzymol. 45: 669 (1976).

    Article  CAS  Google Scholar 

  24. R.P. Harvey, E. Dagryse, L. Stefan, L. Schamber, J.P. Cazeneve, M. Courtney, P. Tobstoskey, and J.P. Lecocg, Cloning and expression of cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinales, Proc. Nat. Acad. Sci. USA 83: 1084 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. E. Degryse, M. Acker, A. Bernt, J.P. Maffrand, C.R. Roitsch, and M. Courtney, Point mutation modifying the thrombin inhibition kinetics and antithrombotic activity in vivo of recombinant hirudin, Prot. Engin. 2: 459 (1989).

    CAS  Google Scholar 

  26. J.L. Krstenansky, and S.J. Mao, C-terminus of hirudin using synthetic unsulfated Na acetyl-hirudin 45–65, FEBS Lett. 211: 10 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. S.J.T. Mao, M.T. Yates, T.J. Owen, and J.L. Krstenansky, Interaction of hirudin with thrombin: identification of a minimal binding domain of hirudin that inhibits clotting activity, Biochemistry 27: 8170 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. J. DiMaio, B. Gibbs, D. Munn, J. Lefebvre, F. Ni, and Y. Konishi, Bifunctional thrombin inhibitors based on the sequence of hirudin45–65, J. Biol. Chem. 265: 21698 (1990).

    PubMed  CAS  Google Scholar 

  29. P. Bourdon, J.W. Fenton II, and J.M. Maraganore, Affinity labelling of lysine-149 in the anion binding exosite of human a-thrombin with a Na-dinitro fluorobenzyl - hirudin C-terminal peptide, Biochemistry 29: 6379 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. J.M. Maraganore, B. Chao, M.L. Joseph, J. Jablonski, K.L. Ramachandran, and J.W. Fenton II, Design and characterization of hirulogs: novel class of bivalent peptide inhibition of thrombin, Biochemistry 29: 7095 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. T. Kline, C. Hammond, P. Bourdon, and J.M. Maraganore, Hirulog peptides with scissile bond replacement resistent to thrombin cleavage, Biochem. Biophys. Res. Commun. 177: 1049 (1991).

    Article  CAS  Google Scholar 

  32. J. DiMaio, F. Ni, B. Gibbs, and Y. Konishi, A new class of potent thrombin inhibitor that incorporates a scissile pseudopeptide bond, FEBS Letts 282: 47 (1991).

    Article  CAS  Google Scholar 

  33. S. Bajusz, E. Barabas, P. Tolnag, E. Szell, and D. Bagdy, Inhibition of thrombin and trypsin by tripeptide aldehyde, Int. J. Pept. Prot. Res. 12: 217 (1978).

    Article  CAS  Google Scholar 

  34. C. Kettner, L. Merginger, and R. Knabb, The selective inhibition of thrombin by peptides of boroarginine, J. Biol. Chem. 265: 18289 (1990).

    PubMed  CAS  Google Scholar 

  35. R. Kikumoto, Y. Tanao, T. Tezuka, S. Tonomura, M. Mara, K. Ninomiya, A. Hijikata, and S. Okamoto, Selective inhibition of thrombin by (2R,4R)-4-methyl-1-(N2-((3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl)-L-arginyl)-2-piperidinecarboxylic acid), Biochemistry 23: 85 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. D.M. Tollefsen, C.A. Pestka, M.J. Monafo, Activation of heparin cofactor II by dermatan sulfate, J. Biol. Chem. 258: 6713 (1984).

    Google Scholar 

  37. F.A. Ofosu, G.J. Modi, L.M. Smith, A.L. Cerskus, J. Hirsh, and M.A. Blajchman, Heparan sulphate and dermatan sulphate inhibit the generation of thrombin activity in plasma by complementary pathways, Blood 64: 742 (1984).

    PubMed  CAS  Google Scholar 

  38. F.A. Ofosu, M.A. Blajchman, G.J. Modi, L.M. Smith, M.R. Buchanan, and J. Hirsh, The importance of thrombin inhibition for the expression of the anticoagulant activity of heparin, dermatan sulphate, low molecular weight heparin and pentosan polysulphate, Br. J. Haematol. 60: 695 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. W. Raake, R.J. Klausen, E. Meintsberger, P. Zeller, and H. Elting, Pharamcologic profile of the antithrombotic and bleeding actions of sulfated lactobionic acid amides, Sem. Thromb. Haemost. 17:Suppl 1. 129 (1991).

    Google Scholar 

  40. F.A. Ofosu, J. Fareed, L.M. Smith, N. Anvari, D. Hoppensteadt, and M.A. Blajchman, Eur. J. Biochem. 203: 121 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. J.W. Fenton II, J.I. Witting, C. Pouliott, and J. Fareen, Anion binding site exosite interactions with heparin and various polyanions, Ann. N.Y. Acad. Sci. 556: 158 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. J.I. Witting, P. Bourdon, D.X. Brezniak, J. Maraganore, and J.W. Fenton II, Thrombin specific inhibition by and slow cleavage of Hirulog-1, Biochem. J. 283: 737 (1992).

    CAS  Google Scholar 

  43. R.E. Jordan, G.M. Oosta, W.T. Gardner, and R.D. Rosenberg, The kinetics of haemostatic enzyme antithrombin interactions in the presence of low molecular weight heparin, J. Biol. Chem. 255: 10081 (1980).

    PubMed  CAS  Google Scholar 

  44. D.M. Tollefsen, D.W. Majerus, and M.K. Blank, Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma, J. Biol. Chem. 257: 2162 (1982).

    PubMed  CAS  Google Scholar 

  45. E.W. Davie, K. Fujikawa, and W. Kisiel, The coagulation cascade: initiation, maintenance and reguation, Biochemistry 30: 10363 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. F.A. Ofosu, J. Hirsh, C.T. Esmon, G.J. Modi, L.M. Smith, N. Anvari, M.R. Buchanan, J.W. Fenton II, and M.A. Blajchman, Unfractionated heparin inhibits the thrombin-catalyzed amplification reactions of coagulation more efficiently than those catalyzed by factor Xa, Biochem. J. 257: 143 (1989).

    CAS  Google Scholar 

  47. F.A. Ofosu, J. Choay, N. Anvari, L.M. Smith, and M.A. Blajchman, Inhibition of factor X and factor V activation by dermatan sulphate and a pentasaccharide with high affinity for antithrombin III in human plasma, Eur. J. Biochem. 193: 485 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. X. Yang, M.A. Blajchman, S. Craven, L.M. Smith, N. Anvari, and F.A. Ofosu, Activation of factor V during intrinsic and extrinsic coagulation. Inhibition by heparin, hirudin and D-Phe-Pro-Arg CHZCP, Biochem. J. 272: 399 (1990).

    PubMed  CAS  Google Scholar 

  49. D.D. Monkovic, and P.B. Tracy, Activation of human factor V by factor Xa and thrombin, Biochemistry 29: 1118 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. E. Marcianiak, Factor Xa inactivation by antithrombin III. Evidence for biological stabilization of factor Xa by factor V-phospholopid complexes, Br. J. Haematol. 24: 391 (1973).

    Article  Google Scholar 

  51. P.N. Walsh, R. Biggs, and G. Gagnatelli, Platelet antiheparin activity. Assay based on factor Xa inactivation by heparin and antifactor Xa, Br. J. Haematol. 26: 405 (1974).

    Article  PubMed  CAS  Google Scholar 

  52. T.W. Barrowcliffe, F.J. Havercroft, G. Kemball-Cook, and U. Lindahl, The effect of Ca’, phospholipid and factor V on the antifactor Xa activity of heparin and its high affinity oligosaccharide, Biochem. J. 243: 31 (1987).

    PubMed  CAS  Google Scholar 

  53. F.A. Ofosu, J.W. Fenton II, J. Maraganore, M.A. Blajchman, X. Yang, L. Smith, N. Anvari, M.R. Buchanan, and J. Hush, Biochem. J. 283: 893 (1992).

    PubMed  CAS  Google Scholar 

  54. J.A. Koedam, R.I. Hamer, N.H. Beeser-Visser, B.N. Bouman, and J.J. Sixma, The effect of von Willebrand factor on activation of factor VIII by factor Xa, Eur.J. Biochem. 189: 229 (1991).

    Article  Google Scholar 

  55. C.T. Esmon, The regulation of natural anticoagulant pathways, Science 235: 1348 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. G.J. Broze, T.J. Guard, and W.F. Novotny, Regulation of coagulation by a multivalent Kunitz-type inhibitor, Biochemistry 29: 7541 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ofosu, F.A. (1993). Mechanisms for the Anticoagulant Effects of Synthetic Antithrombins. In: Claeson, G., Scully, M.F., Kakkar, V.V., Deadman, J. (eds) The Design of Synthetic Inhibitors of Thrombin. Advances in Experimental Medicine and Biology, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2418-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2418-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2420-9

  • Online ISBN: 978-1-4899-2418-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics