Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

Quantum tunneling refers to the possibility that a particle traverses a classically forbidden region. It represents one of the more striking features of quantum phenomena. Tunneling is a manifestation of the wave properties of matter and it may occur at size scales ranging from those of elementary particles up to those involving solid state structures, i.e., size scales involving several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Oppenheimer, Three notes on the quantum theory of aperiodic affects, Phys. Rev. 13, 66–81 (1928).

    Article  ADS  Google Scholar 

  2. G. Gamow, Zur quantentheorie des atomkernes, Z. Phys. 51, 204–212 (1928).

    Article  ADS  MATH  Google Scholar 

  3. R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc. Roy. Soc. (London) 119, 173–181 (1928).

    Article  ADS  MATH  Google Scholar 

  4. J. Humblet and L. Rosenfeld, Theory of nuclear reactions I. Resonant states and collision matrix, Nucl. Phys. 26, 529–578 (1961).

    Article  MATH  Google Scholar 

  5. J. Frenkel, On the electrical resistance of contacts between solid conductors, Phys. Rev. 36, 1604–1618 (1930).

    Article  ADS  Google Scholar 

  6. A. Sommerfeld and H. A. Bethe, in: Handbuch der Physik (S. Flüge, ed.), Vol. 24, pp. 333–555, Springer, Berlin (1933).

    Google Scholar 

  7. A. H. Wilson, A note on the theory of rectification, Proc. Roy. Soc. (London) A136, 487–498 (1932).

    ADS  Google Scholar 

  8. C. Zener, A theory of electrical breakdown of solid dialectrics, Proc. Roy. Soc. (London) A145, 523–529 (1943).

    ADS  Google Scholar 

  9. L. Esaki, New phenomenon in narrow germanium p-n junctions, Phys. Rev. 109, 603–604 (1957).

    Article  ADS  Google Scholar 

  10. I. Giaever, Electron tunneling in superconductors, Phys. Rev. Lett. 5, 464–466 (1960).

    Article  ADS  Google Scholar 

  11. J. Bardeen, Tunneling from a many-particle point of view, Phys. Rev. Lett. 6, 57–59 (1961).

    Article  ADS  Google Scholar 

  12. B. D. Josephson, Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253 (1962).

    Article  ADS  MATH  Google Scholar 

  13. G. Binning and H. Rohrer, Scanning tunneling microscopy—from birth to adolescence, Rev. Mod. Phys. 59, 615–625 (1987).

    Article  ADS  Google Scholar 

  14. C. B. Duke, Tunneling in Solids, Academic, New York (1969).

    Google Scholar 

  15. E. Burstein and S. Lundqvist (eds.), Tunneling Phenomena in Solids, Plenum, New York (1969).

    Google Scholar 

  16. E. L. Wolf, Principles of Electron Tunneling Spectroscopy, Oxford University Press, New York, Oxford (1985).

    Google Scholar 

  17. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14, 61–65 (1970).

    Article  Google Scholar 

  18. R. Tsu and L. Esaki, Tunneling in a finite superlattice, Appl. Phys. Lett. 22, 562–564 (1973).

    Article  ADS  Google Scholar 

  19. L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett. 24, 593–595 (1974).

    Article  ADS  Google Scholar 

  20. L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke, and G. Schul, Structures grown by molecular beam epitaxy, J. Vac. Sci. Technol. 10, 655–662 (1973).

    Article  ADS  Google Scholar 

  21. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannewald, C. D. Parker, and D. D. Peck, Resonant tunneling through quantum wells at frequencies up to 2.5 Thz, Appl. Phys. Lett. 43, 588–590 (1983).

    Article  ADS  Google Scholar 

  22. M. Tsuchiya and H. Sakaki, Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double-barrier diode structures, Appl. Phys. Lett. 49, 88–90 (1986).

    Article  ADS  Google Scholar 

  23. M. Tsuchiya and H. Sakaki, Dependence of resonant tunneling current on Al mole fractions in AlxGa1−x As-GaAs-AlxGa1−x As double-barrier structures, Appl. Phys. Lett. 50, 1503–1505 (1987).

    Article  ADS  Google Scholar 

  24. P. Guéret, C. Rössel, E. Marclay, and H. Meier, Investigations on resonant tunneling in III-V heterostructures, J. Appl. Phys. 66, 278–285 (1989).

    Article  ADS  Google Scholar 

  25. T. Inata, S. Muto, Y. Nakata, T. Fujii, H. Ohnishi, and S. Hiyamizu, Excellent negative differential resistance of InAlAs/InGaAs resonant tunneling structures grown by MBE, Jpn. J. Appl. Phys. 25, L983–L985 (1985).

    Article  Google Scholar 

  26. T. P. E. Broekaert, W. Lee, and C. G. Fonstad, Pseudomorphic Ino.53Gao.47As/AlAs/InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature, Appl. Phys. Lett. 53, 1545–1547 (1988).

    Article  ADS  Google Scholar 

  27. F. Capasso, S. Sen, F. Beltram, and A. Y. Cho, in: Submicron Integrated Circuits (R. K. Watts, ed.), pp.204–268, Wiley, New York (1989).

    Google Scholar 

  28. B. Ricco and M. Ya. Azbel, Physics of resonant tunneling. The one-dimensional doublebarrier case, Phys. Rev. B 29, 1970–1981 (1984).

    Article  ADS  Google Scholar 

  29. S. Luryi, Frequency limit of double-barrier resonant tunneling oscillators, Appl. Phys. Lett. 47, 490–492 (1985).

    Article  ADS  Google Scholar 

  30. T. Weil and B. Vinter, Equivalence between resonant tunneling and sequential tunneling in double-barrier diodes, Appl. Phys. Lett. 50, 1281–1283 (1987).

    Article  ADS  Google Scholar 

  31. G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49, 519–530 (1936).

    Article  ADS  MATH  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory), Pergamon, Oxford (1977).

    Google Scholar 

  33. G. García-Calderón and R. E. Peierls, Resonant states and their uses, Nucl. Phys. A265, 443–460 (1976).

    ADS  Google Scholar 

  34. G. García-Calderón, The effect of asymmetry on resonant tunneling in one dimension, Solid State Comun. 62, 441–447 (1987).

    Article  ADS  Google Scholar 

  35. G. García-Calderón, A. Rubio, and R. Romo, Decay widths for double-barrier resonant tunneling, J. Appl. Phys. 69, 3612–3615 (1991).

    Article  ADS  Google Scholar 

  36. M. Bü ttiker, Coherent and sequential tunneling in series barriers, IBM J. Res. Develop. 32, 63–75 (1988).

    Article  Google Scholar 

  37. A. D. Stone and P. A. Lee, Effect of inelastic processes on resonant tunneling in one dimension, Phys. Rev. Lett. 54, 1196–1199 (1985).

    Article  ADS  Google Scholar 

  38. M. Jonson and A. Grincwajg, Effect of inelastic scattering on resonant and sequential tunneling in double-barrier heterostructures, Appl. Phys. Lett. 51, 1729–1731 (1987).

    Article  ADS  Google Scholar 

  39. G. García-Calderón and A. Rubio, Effect of inelastic processes on the elastic width in resonant structures, Phys. Rev. B 15 (to appear).

    Google Scholar 

  40. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Resonant tunneling with electronphonon interaction: an exactly solvable model, Phys. Rev. Lett. 61, 1396–1399 (1988).

    Article  ADS  Google Scholar 

  41. W. Cai, T. F. Zheng, P. Hu, B. Yudanin, and M. Lax, Model of phonon-associated electron tunneling through a semiconductor double barrier, Phys. Rev. Lett. 63, 418–421 (1989).

    Article  ADS  Google Scholar 

  42. M. Jonson, Quantum-mechanical resonant tunneling in the presence of a boson field, Phys. Rev. B 39, 5924–5933 (1989).

    Article  ADS  Google Scholar 

  43. G. Y. Wu and T. C. McGill, Effects of barrier phonons on the tunneling current in a double-barrier structure, Phys. Rev. B 40, 9969–9972 (1989).

    Article  ADS  Google Scholar 

  44. F. Chevoir and B. Vinter, Calculation of phonon-assisted tunneling and valley current in a double-barrier diode, Appl. Phys. Lett. 55, 1859–1861 (1989).

    Article  ADS  Google Scholar 

  45. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Inelastic scattering in resonant tunneling, Phys. Rev. B 40, 11834–11850 (1989).

    Article  ADS  Google Scholar 

  46. Antti-Pekka Jauho, Numerical simulation of resonant tunneling in the presence of inelastic processes, Phys. Rev. B 41, 12327–12329 (1990).

    Article  ADS  Google Scholar 

  47. B. Y. Gu, C. Coluzza, M. Mangiantini, and A. Frova, The effect of scattering on electron-tunneling mechanism in double-barrier heterostructures, Superlatt. Microstruct. 7, 29–34 (1990).

    Article  ADS  Google Scholar 

  48. X. Wu and S. E. Ulloa, Electron-phonon interaction in double-barrier resonant tunneling, Phys. Rev. B 44, 13148–13151 (1991).

    Article  ADS  Google Scholar 

  49. J. W. Gadzuk, Inelastic resonance scattering, tunneling, and desorption, Phys. Rev. B 44, 13446–13477 (1991).

    Article  ADS  Google Scholar 

  50. J. A. Stovneng, E. H. Hauge, P. Lipavsky, and V. Spicka, Tight-binding approach to resonant tunneling with electron-phonon coupling, Phys. Rev. B 44, 13595–13602 (1991).

    Article  ADS  Google Scholar 

  51. E. V. Anda and F. Flores, The role of inelastic scattering in resonant tunneling heterostructures, J. Phys.: Condens. Matter 3, 9087–9101 (1991).

    Article  ADS  Google Scholar 

  52. R. Lake and S. Datta, Nonequilibrium Green’s function method applied to doublebarrier resonant tunneling diodes, Phys. Rev. B 45, 6670–6685 (1992).

    Article  ADS  Google Scholar 

  53. E. E. Mendez, in: Physics and Applications of Quantum Wells and Superlattices (E. E. Mendez and K. von Klitzing, eds.), pp. 159–188, Plenum, New York (1987).

    Chapter  Google Scholar 

  54. G. A. Tombs and F. W. Sheard, in: Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures (J. M. Chamberlain, L. Eaves, and J. C. Portal, eds.), pp. 257–282, Plenum, New York (1990).

    Chapter  Google Scholar 

  55. L. Eaves, in: Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures (J. M. Chamberlain, L. Eaves and J. C. Portal, eds.), pp. 243–256, Plenum, New York (1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

García-Calderón, G. (1993). Tunneling in Semiconductor Resonant Structures. In: Butcher, P., March, N.H., Tosi, M.P. (eds) Physics of Low-Dimensional Semiconductor Structures. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2415-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2415-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2417-9

  • Online ISBN: 978-1-4899-2415-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics