Skip to main content

Electrons in Superlattices

  • Chapter

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

In this chapter an overview on electronic phenomena in semiconductor superlattices will be given. In Section 10.2 we will briefly outline the basic considerations for designing the subband structure of compositional and doping superlattices. More details on the microscopic nature of the electronic states are to be found in Chapter 1. Our goal in Section 10.3 is to demonstrate that superlattices provide unique conditions for observing “high-field phenomena,” which may never occur in bulk semiconductors. The peculiarities of optical transitions in compositional and doping superlattices, with emphasis on field effects and nonlinearities will be discussed in Section 10.4. The last two sections are devoted to two topics specifically related to n-i-p-i doping superlattices. In Section 10.5 we will discuss the strong dependence of optical interband transition probabilities on magnetic fields in two-dimensional systems with spatially separated electron and hole states. Finally we discuss the potential of δ-doped n-i-p-i structures for studying the electronic structure and the transport properties of two-dimensional impurity bands as a function of occupancy and “filling factor” (doping density) × (effective Bohr radius)2 in Section 10.6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14, 61–65 (1970).

    Article  Google Scholar 

  2. G. H. Döhler, Electron states in crystals with “nipi-superstructure,” Phys. Stat. Sol. 52, 79–92 (1972).

    Article  ADS  Google Scholar 

  3. G. H. Döhler, Electrical and optical properties of crystals with “nipi-superstructure,” Phys. Stat. Sol. (b) 52, 533–545 (1972).

    Article  ADS  Google Scholar 

  4. M. W. Prairie and R. M. Kolbas, A general derivation of the density of states function for quantum wells and superlattices, Superlattices and Microstructures 7, 269–277 (1990).

    Article  ADS  Google Scholar 

  5. P. Ruden and G. H. Döhler, Electronic structure of semiconductors with doping superlattices, Phys. Rev. B 27, 3538–3546 (1983).

    Article  ADS  Google Scholar 

  6. E. F. Schubert, Y. Horikoshi, and K. Ploog, Radiative electron-hole recombination in a new sawtooth semiconductor superlattice grown by molecular-beam epitaxy, Phys. Rev. B 32, 1085–1089 (1985).

    Article  ADS  Google Scholar 

  7. H. J. Beyer, C. Metzner, J. Heitzer, and G. H. Döhler, Temperature dependence of the tunable luminescence, absorption and gain spectra of nipi doping superlattices—Theory and comparison with experiment, Superlattices and Microstructures 6, 351–356 (1989).

    Article  ADS  Google Scholar 

  8. E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).

    Article  ADS  Google Scholar 

  9. R. Tsu and G. H. Döhler, Hopping conduction in a “superlattice,” Phys. Rev. B 12, 680–686 (1975).

    Article  ADS  Google Scholar 

  10. G. H. Döhler, R. Tsu, and L. Esaki, A new mechanism for negative differential conductivity in superlattices, Solid State Commun. 17, 317–320 (1975).

    Article  Google Scholar 

  11. J. A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices, Phys. Rev. Lett. 64, 52–55 (1990).

    Article  ADS  Google Scholar 

  12. L. Esaki and L. L. Chang, New transport phenomena in a semiconductor “superlattice,” Phys. Rev. Lett. 33, 495–498 (1974).

    Article  ADS  Google Scholar 

  13. H. T. Grahn, K. von Klitzing, K. Ploog, and G. H. Döhler, Electrical transport in narrow-miniband semiconductor superlattices, Phys. Rev. B (Rapid Communications) in press.

    Google Scholar 

  14. A. Sibille, J. F. Palmier, C. Minot, and F. Mollot, Appl. Phys. Lett. 54, 165ff (1989).

    Article  ADS  Google Scholar 

  15. C. Maan, Magnetic levels in superlattices, Superlattices and Microstructures 2, 557–563 (1986).

    Article  ADS  Google Scholar 

  16. J. Zak, Stark ladder in solids, Phys. Rev. Lett. 20, 1477 (1968).

    Article  ADS  Google Scholar 

  17. J. E. Avron, Model calculation of Stark ladder resonances, Phys. Rev. Lett. 37, 1568 (1976).

    Article  ADS  Google Scholar 

  18. H. Schneider, W. W. Rühle, K. v. Klitzing, and K. Ploog, Electrical and optical time-of flight experiments in GaAs/AlAs superlattices, Appl. Phys. Lett. 54, 2656–2658 (1989).

    Article  ADS  Google Scholar 

  19. R. F. Kazarinov and R. A. Suris, Electric and electromagnetic properties of semiconductors with a superlattice, Sov. Phys. Semicond. 6, 120–131 (1972).

    Google Scholar 

  20. G. H. Döhler and P. P. Ruden, Theory of absorption of doping superlattices, Phys. Rev. B 30, 5932–5944 (1984).

    Article  ADS  Google Scholar 

  21. G. H. Döhler, n-i-p-i doping superlattices—metastable semiconductors with tunable properties, J. Vac. Sci. Technol. B 1, 278–284 (1983).

    Article  Google Scholar 

  22. E. F. Schubert, B. Ullrich, T. D. Harris, and J. E. Cunningham, Quantum-confined interband absorption in GaAs sawtooth-doping superlattices, Phys. Rev. B 38, 8305–8308 (1988).

    Article  ADS  Google Scholar 

  23. S. Eckl, K. Schrüfer, and G. H. Döhler, unpublished.

    Google Scholar 

  24. H. Jung, G. H. Döhler, E. O. Göbel, and K. Ploog, Optical gain in GaAs doping superlattices, Appl. Phys. Lett. 43, 40–42 (1983).

    Article  ADS  Google Scholar 

  25. G. H. Döhler, Doping superlattices (“n-i-p-i crystals”), IEEE J. of Quantum Electronics QE-22, 1682–1695 (1986).

    Article  ADS  Google Scholar 

  26. G. H. Döhler, The physics and applications of n-i-p-i doping superlattices, CRC Rev. Solid State and Mat. Sci. 13, 97–141 (1987).

    Article  Google Scholar 

  27. G. H. Döhler, H. Künzel, and K. Ploog, Tunable absorption coefficient in GaAs doping superlattices, Phys. Rev. B 25, 2616–2626 (1982).

    Article  ADS  Google Scholar 

  28. E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93, 632–633 (1954).

    Article  ADS  Google Scholar 

  29. F. Stern, Dispersion of the index of refraction near the absorption edge of semiconductors, Phys. Rev. 133, A1653–A1664 (1964).

    Article  ADS  Google Scholar 

  30. D.E. Aspnes and N. Bottka, Electric field effects on the dielectric function of semiconductors and insulators, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 9 (1972).

    Google Scholar 

  31. G. H. Döhler, G. Hasnain, and J. N. Miller, In situ grown-in selective contacts to n-i-p-i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask, Appl. Phys. Lett. 49, 704–707 (1986).

    Article  ADS  Google Scholar 

  32. C. J. Chang-Hasnain, G. Hasnain, N. M. Johnson, G. H. Döhler, J. N. Miller, J. R. Whinnery, and A. Dienes, Tunable electroabsorption in galium arsenide doping superlattices, Appl. Phys. Lett. 50, 915–917 (1987).

    Article  ADS  Google Scholar 

  33. N. Linder, W. El-Banna, U. Keil, K. Schmidt, G. H. Döhler, J. N. Miller, and K. J. Ebeling, Electro-and photo-modulation spectroscopy of long period doping super-lattices, SPIE Proc. 1286 (1990).

    Google Scholar 

  34. D. F. Blossey, Wannier exciton in an electric field. I. Optical absorption by bound and continuum states, Phys. Rev. B 2, 3976 (1970).

    Article  ADS  Google Scholar 

  35. G. H. Döhler, A n-i-p-i-based new concept for optical logic gates, SPIE Proc. 1283, 103–117 (1990).

    Article  Google Scholar 

  36. G. H. Döhler, Electro-optical and opto-optical devices based on n-i-p-i doping superlattices, Superlattices and Microstructures 8, 49–58 (1990).

    Article  ADS  Google Scholar 

  37. D. A. B. Miller, D. S. Chemla, and T. C. Damen, Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect, Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  ADS  Google Scholar 

  38. A. Kost, M. Kawase, E. Garmire, A. Danner, H. C. Lee, and P. D. Dapkus, Carrier lifetimes in a hetero-n-i-p-i-structure, SPIE Proc. 943, 114–118 (1988).

    Article  Google Scholar 

  39. G. H. Döhler, n-i-p-i doping superlattices under high magnetic fields, in: High Magnetic Fields in Semiconductor Physics II (G. Landwehr, ed.), Springer Series in Solid State Sciences, Vol. 87, 174-184 (1989).

    Google Scholar 

  40. J. H. Burnett, H. M. Cheong, W. Paul, P. F. Hopkins, E. G. Gwinn, A. J. Rimberg, R. M. Westervelt, M. Sundaram, and A. C. Gossard, Photoluminescence excitation spectroscopy of remotely doped wide parabolic GaAs/AlxGa1−xAs quantum wells, Phys. Rev. B 43, 12–33 (1991).

    Google Scholar 

  41. G. H. Döhler, Properties of impurity states in n-i-p-i superlattice structures, in: Properties of Impurity States in Superlattice Semiconductors (Batra and Ciraci, eds.), pp. 159–174. Plenum, New York (1988).

    Chapter  Google Scholar 

  42. Y. Yafet, R. W. Keyes, and E. N. Adams, Impurity wave functions with B-field, J. Phys. Chem. Solids 1, 137 (1956).

    Article  ADS  Google Scholar 

  43. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., Oxford (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Döhler, G.H. (1993). Electrons in Superlattices. In: Butcher, P., March, N.H., Tosi, M.P. (eds) Physics of Low-Dimensional Semiconductor Structures. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2415-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2415-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2417-9

  • Online ISBN: 978-1-4899-2415-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics