Skip to main content

Discharges within Graphite Furnace Atomizers

  • Chapter
  • 191 Accesses

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

In recent years, the concept of using electrical discharges within graphite furnace atomizers as atomization/excitation sources for atomic emission spectrometry has been established and evaluated.(1–31) The excitation in these sources is principally dependent on the discharge and is not a direct result of the electrothermal heating of the furnace. Consequently, this unique concept has been designated furnace atomization nonthermal excitation spectrometry (FANES). This can lead to some confusion since “nonthermal” also implies that the line radiance and profile associated with the discharge do not conform to Maxwell-Boltzmann statistics.(32) While it is certain that the discharge is necessary for excitation, there is considerable uncertainty whether all the discharges described in this chapter can be generally categorized as nonthermal. We shall nevertheless continue to use FANES to describe the concept, bearing in mind the above ambiguity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Falk, Einige theoretiche uberlegungen zum vergleich der physikalischen grenzen thermischer und nicht-thermischer spektroskopischer strahlungsquellen, Spectrochim. Acta 32B (1977) 437.

    Article  CAS  Google Scholar 

  2. H. Falk, E. Hoffmann, I. Jaeckel, and C. Ludke, Atomic emission trace analysis by nonthermal excitation, Spectrochim. Acta 34B (1979) 333.

    Article  Google Scholar 

  3. H. Falk, E. Hoffmann, and C. Ludke, FANES (furnace atomic non-thermal excitation spectrometry)—a new emission technique with high detection power, Spectrochim. Acta 36B (1981) 767.

    Article  Google Scholar 

  4. H. Falk, E. Hoffmann, C. Ludke, J. M. Ottaway, and S. K. Giri, Furnace atomization with non-thermal excitation—experimental evaluation of detection based on a high-resolution echelle monochromator incorporating automatic background correction, Analyst 108 (1983) 1459.

    Article  CAS  Google Scholar 

  5. H. Falk, E. Hoffmann, and C. Ludke, A comparison of furnace atomic non-thermal excitation spectrometry (FANES) with other atomic spectroscopic techniques, Spectrochim. Acta 39B (1984) 283.

    Article  Google Scholar 

  6. H. Falk, E. Hoffmann, C. Ludke, J. M. Ottaway, and D. Littlejohn, Studies on the determination of cadmium in blood by furnace atomic non-thermal excitation spectrometry, Analyst 111 (1986) 285.

    Article  CAS  Google Scholar 

  7. K. Dittrich, B. Hanisch, and H.-J. Stark, Molecule formation in electrothermal atomizers: Interferences and analytical possibilities by absorption, emission and fluorescence processes, Fresenius Z. Anal. Chem. 324 (1986) 497.

    Article  CAS  Google Scholar 

  8. D. Littlejohn, J. Carroll, A. M. Quinn, J. M. Ottaway, and H. Falk, Comments on the characteristics of an atomizer for furnace atomic non-thermal excitation spectrometry (FANES), Fresenius Z. Anal. Chem. 323 (1986) 762.

    Article  CAS  Google Scholar 

  9. H. Falk, E. Hoffmann, C. Ludke, and K. P. Schmidt, Untersuchungen zur direktanalyse fester pflanzlicher Stoffe mittels FANES (furnace atomic non-thermal excitation spectrometry), Spectrochim. Acta 41B (1986) 853.

    Article  Google Scholar 

  10. H. Falk and J. Tilch, Atomization efficiency and over-all performance of electrothermal atomizers in atomic absorption, furnace atomization non-thermal excitation and laser-excited atomic fluorescence spectrometry, J. Anal. At. Spectrom.2 (1987) 527.

    Article  CAS  Google Scholar 

  11. K. Dittrich and H. Fuchs, Molecular non-thermal excitation spectrometry (MONES): A procedure for the determination of non-metals using diatomic molecules in the non-thermal (FANES) atomizer; Part 1. Determination of fluoride and chloride ions by magnesium fluoride and magnesium chloride MONES, J. Anal. At. Spectrom.2 (1987) 533.

    Article  CAS  Google Scholar 

  12. H. Falk, Hollow-cathode discharge within a graphite furnace: Furnace atomic non-thermal excitation spectrometry (FANES), in : Improved Hollow Cathode Lamps for Atomic Spectroscopy (S. Caroli, ed.), pp. 74–118, Ellis Horwood Ltd., Halstead Press, New York, 1987.

    Google Scholar 

  13. K. Dittrich, T. Glaubauf, H. Fuchs, and K. Mauersberger, Analytical applications of furnace atomization non-thermal excitation spectrometry (FANES) and molecular nonthermal excitation spectrometry (MONES) ; Part 2. Determination of technetium-99 by FANES and electrothermal atomization atomic absorption spectrometry, J. Anal. At. Spectrom. 3 (1988) 89.

    Article  CAS  Google Scholar 

  14. D. Littlejohn, Graphite furnace atomic emission spectrometry—the rediscovery of a technique, Anal. Proc. 25 (1988) 217.

    Article  CAS  Google Scholar 

  15. H. Falk, E. Hoffmann, and C. Ludke, Experimental and theoretical investigations relating to FANES, Prog. Anal. Spectrosc. 11 (1988) 417.

    CAS  Google Scholar 

  16. K. Dittrich, G. Eismann, and H. Fuchs, Analytical applications of furnace atomization non-thermal excitation spectrometry (FANES) and molecular non-thermal excitation spectrometry (MONES) ; Part 3. Determination of rare earth elements by electrothermal atomization atomic emission spectrometry (ETA-AAS), FANES and furnace ionization nonthermal excitation spectrometry (FINES), J. Anal. At. Spectrom. 3 (1988) 459.

    Article  CAS  Google Scholar 

  17. B. Naumann, B. Knull, F. Kerstan, and J. Opfermann, Multivariate optimization of simultaneous multi-element analysis by furnace atomic non-thermal excitation spectrometry (FANES), J. Anal. At. Spectrom. 3 (1988) 1121.

    Article  CAS  Google Scholar 

  18. N. E. Ballou, D. L. Styris, and J. M. Harnly, Hollow-anode plasma excitation source for atomic emission spectrometry, J. Anal. At. Spectrom. 3 (1988) 1141.

    Article  CAS  Google Scholar 

  19. D. Littlejohn, Becoming absorbed and excited in atomic spectrometry, Anal. Proc. 26 (1989) 92.

    Article  CAS  Google Scholar 

  20. D. C. Liang and M. W. Blades, An atmospheric pressure capacitively coupled plasma formed inside a graphite furnace for atomic emission spectroscopy, Spectrochim. Acta 44B (1989) 1059.

    Article  Google Scholar 

  21. R. E. Sturgeon, S. N. Willie, V. Luong, S. Berman, and J. G. Dunn, Furnace atomization plasma emission spectrometry (FAPES), J. Anal. At. Spectrom. 4 (1989) 669.

    Article  CAS  Google Scholar 

  22. K. Dittrich and H. Fuchs, Analytical applications of furnace atomic non-thermal excitation spectrometry (FANES) and molecular non-thermal excitation spectrometry (MONES); Part 3. Determination of trace amounts of phosphorous by FANES, J. Anal. At. Spectrom. 4 (1989) 705.

    Article  CAS  Google Scholar 

  23. K. Dittrich and H. Fuchs, Analytical applications of furnace atomic non-thermal excitation spectrometry (FANES) and molecular non-thermal excitation spectrometry (MONES); Part 5. Study of the MONES of PO and HPO for the determination of trace amounts of phosphorous, J. Anal. At. Spectrom. 5 (1990) 39.

    Article  CAS  Google Scholar 

  24. D. L. Smith, D. C. Liang, D. Steel, and M. W. Blades, Analytical characteristics of furnace atomization plasma excitation spectrometry (FAPES), Spectrochim. Acta 45B (1990) 493.

    Article  Google Scholar 

  25. J. M. Harnly, D. L. Styris, and N. E. Ballou, Furnace atomic non-thermal excitation spectrometry with the furnace as a hollow anode, J. Anal. At. Spectrom. 5 (1990) 139.

    Article  CAS  Google Scholar 

  26. K. Dittrich, B. Radziuk, and B. Welz, Investigations of the determination of chloride and bromide by furnace atomic non-thermal excitation spectrometry and furnace ionic nonthermal excitation spectrometry, Spectrometry 6 (1991) 465.

    CAS  Google Scholar 

  27. R. E. Sturgeon, S. N. Willie, V. T. Luong, and S. S. Berman, Determination of cadmium and lead in sediment and biota by FAPES, J. Anal. At. Spectrom. 5 (1990) 635.

    Article  CAS  Google Scholar 

  28. R. E. Sturgeon, S. N. Willie, V. Luong, and S. S. Berman, Figures of merit for furnace atomization plasma emission spectrometry, Anal. Chem. 62 (1990) 2370.

    Article  CAS  Google Scholar 

  29. P. G. Riby, J. M. Harnly, D. L. Styris, and N. E. Ballou, Emission characteristics of chromium in hollow anode-furnace atomization non-thermal excitation spectrometry, Spectrochim. Acta 46B (1991) 203.

    Article  Google Scholar 

  30. R. E. Sturgeon, S. N. Willie, V. T. Luong, and S. S. Berman, Application of platform and palladium modification techniques with furnace atomization plasma emission spectrometry, J. Anal. At. Spectrom. 6 (1991) 19.

    Article  CAS  Google Scholar 

  31. R. E. Sturgeon, S. N. Willie, V. T. Luong, and S. S. Berman, Characteristic temperatures in a FAPES source, Spectrochim. Acta 46B (1991) 1021.

    Article  Google Scholar 

  32. C. T. J. Alkemade, T. J. Hollander, W. Snelleman, and P. J. T. Zeegers, Metal Vapors in Flames, Pergamon Press, Elmsford, N.Y., 1982.

    Google Scholar 

  33. R. E. Sturgeon and S. S. Berman, Analyte ionization in graphite furnace-atomic absorption spectrometry, Anal. Chem. 53 (1981) 632.

    Article  CAS  Google Scholar 

  34. W. Slavin, Graphite Furnace AAS—A Source Book, Perkin-Elmer Corp., Norwalk, Conn., 1984.

    Google Scholar 

  35. J. M. Ottaway and F. Shaw, Carbon furnace atomic-emission spectrometry: A preliminary appraisal, Analyst 100 (1975) 438.

    Article  CAS  Google Scholar 

  36. M. S. Epstein, T. C. Rains, and T. C. O’Haver, Wavelength modulation for background correction in graphite furnace atomic emission spectrometry, Appl. Spectrosc. 30 (1976) 324.

    Article  CAS  Google Scholar 

  37. W. Freeh, D. C. Baxter, and B. Hutsch, Spatially isothermal graphite furnace for atomic absorption spectrometry using side-heated cuvettes with integrated contacts, Anal. Chem. 58 (1986) 1973.

    Article  Google Scholar 

  38. R. E. Sturgeon and S. S. Berman, Determination of the efficiency of the graphite furnace for atomic absorption spectrometry, Anal. Chem. 55 (1983) 190.

    Article  CAS  Google Scholar 

  39. B. Welz, M. Sperling, G. Schlemmer, N. Wenzel, and G. Marowsky, Spatially and temporally resolved gas phase temperature measurements in a Massman-type graphite tube furnace using coherent anti-Stokes Raman scattering, Spectrochim. Acta 43B (1988) 1187.

    Article  Google Scholar 

  40. P. J. Slevin and W. W. Harrison, The hollow cathode discharge as a spectrochemical emission source, Appl. Spectrosc. Rev. 10 (1975) 201.

    Article  CAS  Google Scholar 

  41. S. Caroli, Lowpressure discharges: Fundamental and applicative aspects, J. Anal. At. Spectrom. 2 (1987) 661.

    Article  CAS  Google Scholar 

  42. M. E. Pillow, A critical review of spectral and related physical properties of the hollow cathode discharge, Spectrochim. Acta 36B (1981) 821.

    Article  Google Scholar 

  43. J. A. C. Broekaert, State of the art of glow discharge lamp spectrometry, J. Anal. At. Spectrom. 2 (1987) 537.

    Article  CAS  Google Scholar 

  44. K. G. Hernquist and E. O. Johnson, Retrograde motion in gas discharge plasmas, Phys. Rev. 98 (1955) 1576.

    Article  Google Scholar 

  45. H. L. Wittig, Hollow cathode discharge with thermionic cathodes, J. Appl. Phys. 42 (1971) 5478.

    Article  Google Scholar 

  46. S. N. Salinger and J. E. Rowe, Monte Carlo simulation of the low-voltage arc mode in plasma diodes, J. Appl. Phys. 39 (1968) 3933.

    Article  Google Scholar 

  47. R. M. Martin and R. E. Rowe, Experimental investigations of the low-voltage arc in noble gases, J. Appl. Phys. 39 (1968) 4289.

    Article  CAS  Google Scholar 

  48. G. K. Wehner, J. Appl. Phys. 31 (1960) 1392.

    Article  Google Scholar 

  49. M. Kaminsky, Atoms and Ionic Impact Phenomena on Metal Surfaces, p. 143, Academic Press, New York, 1965.

    Book  Google Scholar 

  50. A. von Hippel, Kathodenzerstaubungsprobleme III zur theorie der kathodenzerstaubung, Ann. Phys. 81 (1976) 1043.

    Google Scholar 

  51. D. Bohm, Minimum ionic kinetic energy for a stable sheath, in: The Characteristics of Electrical Discharges in Magnetic Fields (A. Guthrie and R. K. Walkerling, eds.), pp. 77–86, McGraw-Hill, New York, 1949.

    Google Scholar 

  52. F. F. Chen, Introduction to Plasma Physics, Plenum Press, New York, 1949.

    Google Scholar 

  53. B. Chapman, Glow Discharge Processes, Wiley, New York, 1980.

    Google Scholar 

  54. A. von Engel, Ionized Gases, pp. 214–228, Oxford University Press, London, 1955.

    Google Scholar 

  55. C. P. Herring and M. H. Nichols, Thermionic emission, Rev. Mod. Phys. 21 (1949) 185.

    Article  CAS  Google Scholar 

  56. I. Langmuir, The effect of space charge and residual gases on the thermionic current in high vacuum, Phys. Rev. 2 (1913) 450.

    Article  Google Scholar 

  57. P. F. Little and A. von Engel, The hollow cathode effect and the theory of glow discharges, Proc. R. Soc. London Ser. A 224 (1954) 209.

    Article  CAS  Google Scholar 

  58. S. D. McDonald and S. J. Tatenbaum, High frequency and microwave discharges, in: Gaseous Electronics (M. M. Hirsh and H. G. Oskam, eds.), Vol. 1, pp. 173–217, Academic Press, New York, 1978.

    Chapter  Google Scholar 

  59. L. Holland, W. Steckelmacher, and Y. Yarwood, Vacuum Manual, pp. 384–385, Spon, London, 1974.

    Book  Google Scholar 

  60. J. M. Keller and W. B. Pennebacker, Electrical properties of rf sputtering systems, IBM J. Res. Dev. 23 (1979) 3.

    Article  Google Scholar 

  61. V. P. Gofmeister and Y. M. Kagaan, Mechanism of excitation in a hollow cathode in argon, Opt. Spectrosc. (USSR) (Engl. Transl.) 26 (1969) 379.

    Google Scholar 

  62. H. M. Crosswhite, G. H. Dieke, and C. S. Legagneur, Hollow iron cathode discharge as a source for wavelength and intensity standards, J. Opt. Soc. Am. 45 (1955) 270.

    Article  CAS  Google Scholar 

  63. T. C. O’Haver, Waveform effects in wavelength modulation spectrometry, Anal. Chem. 49 (1977) 458.

    Article  Google Scholar 

  64. J. E. Marshall, D. Littlejohn, J. M. Ottaway, J. M. Harnly, N. J. Miller-Ihli, and T. C. O’Haver, Simultaneous multi-element analysis by carbon furnace atomic-emission spectrometry, Analyst 108 (1983) 178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harnly, J.M., Styris, D.L., Rigby, P.G. (1993). Discharges within Graphite Furnace Atomizers. In: Marcus, R.K. (eds) Glow Discharge Spectroscopies. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2394-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2394-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2396-7

  • Online ISBN: 978-1-4899-2394-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics