Skip to main content

The Role of the Neurosciences in Primate Evolutionary Biology: Historical Commentary and Prospectus

  • Chapter
Primates and Their Relatives in Phylogenetic Perspective

Part of the book series: Advances in Primatology ((AIPR))

Abstract

If behavior is the leading edge of evolution, and if the brain is the principal organ of behavior, one might expect the neurosciences to occupy a central place in evolutionary biology. Obviously, this is not the case—at present. Yet the founders of modern physical anthropology and primatology included several individuals who also made significant contributions to neuroanatomy, particularly Grafton Elliot Smith, Wilfred E. Le Gros Clark, and Raymond Dart. (Examples of these contributions include Elliot Smith, 1897, 1910, 1919; Le Gros Clark, 1932, 1941, 1956; Dart, 1934). Such a confluence of professional interests was no accident: these individuals regarded the understanding of brain evolution as crucial for understanding primate phylogeny. As Elliot Smith (1924, p. 21) put it, the facts of brain evolution are “the cement to unite into one comprehensive story the accumulations of knowledge concerning the essential facts of Man’s pedigree.” In the works of Elliot Smith and Le Gros Clark, it was the increasing complexity of the brain, a result of life in the trees, that enabled primates to become behaviorally flexible or adaptable, and so escape the narrowing adaptations that beset terrestrial mammals (see especially Elliot Smith, 1924; Le Gros Clark, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert, K. 1964. Comparative anatomy of frontal cortex and thalamofrontal connections, in: J. M. Warren and K. Akert (eds.), The Frontal Granular Cortex and Behavior, pp. 372–396. McGraw-Hill, New York.

    Google Scholar 

  • Allman, J. M. 1977. Evolution of the visual system in the early primates, in: J. M. Sprague and A. N. Epstein (eds.), Progress in Psychology and Physiological Psychology, pp. 1–53. Academic Press, New York.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1971. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31:85–105.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, E. 1982. Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus, in: E. Armstrong and D. Falk (eds.), Primate Brain Evolution, pp. 131–161. Plenum Press, New York.

    Chapter  Google Scholar 

  • Armstrong, E. 1983. Relative brain size and metabolism in mammals. Science 220:1302–1304.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, E. 1985. Allometric considerations of the adult mammalian brain, with special emphasis on primates, in: W. L. Jungers (ed.), Size and Scaling in Primate Biology, pp. 115–146. Plenum Press, New York.

    Google Scholar 

  • Bailey, P., and Bonin, G. 1951. The Isocortex of Man. University of Illinois Press, Urbana.

    Google Scholar 

  • Baker, R. J., Novacek, M. J., and Simmons, N. B. 1991. On the monophyly of bats. Syst. Zool. 40:216–231.

    Article  Google Scholar 

  • Berger, B., Gaspar, P., and Verney, C. 1991. Dopaminergic innervation of the cerebral cortex: Unexpected differences between rodent and primate. Trends Neurosci. 14:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, A. 1964. Use of the hand in lower primates, in: J. Buettner-Janusch (eds.), Evolutionary and Genetic Biology of Primates, pp. 133–225. Academic Press, New York.

    Chapter  Google Scholar 

  • Boakes, R. 1984. From Darwin to Behaviourism. Cambridge University Press, London.

    Google Scholar 

  • Bonin, G. von. 1948. The frontal lobe of primates: Cytoarchitectural studies. Res. Publ. Nerv. Ment. Dis. 27:67–83.

    Google Scholar 

  • Brodmann, K. 1909. Vergleichende Lokalisationslehre der Grosshirnrhinde. Barth, Leipzig.

    Google Scholar 

  • Brothers, L., and Ring, B. 1992. A neuroethological framework for the representation of minds. J. Cogn. Neurosci. 4:107–118.

    Article  Google Scholar 

  • Brothers, L., Ring, B., and Kling, A. 1990. Response of neurons in the macaque amygdala to complex social stimuli. Behau. Brain Res. 41:199–213.

    Article  CAS  Google Scholar 

  • Byrne, R. W., and Whitten, A. (eds.) 1988. Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans. Oxford University Press (Clarendon), London.

    Google Scholar 

  • Campbell, C. B. G. 1966. The relationships of the tree shrews: The evidence of the nervous system. Evolution 20:276–281.

    Article  Google Scholar 

  • Campbell, C. B. G. 1980. The nervous system of the Tupaiidae: Its bearing on phyletic relationships, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 219–242. Plenum Press, New York.

    Chapter  Google Scholar 

  • Cartmill, M. 1972. Arboreal adaptations and the origin of the order Primates, in: R. Tuttle (ed.), The Functional and Evolutionary Biology of Primates, pp. 97–122. Aldine, Chicago.

    Google Scholar 

  • Cartmill, M. 1974. Rethinking primate origins. Science 184:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Cartmill, M. 1982. Basic primatology and prosimian evolution, in: F. Spencer (ed.), A History of Physical Anthropology, 1930–1980, pp. 147–186. Academic Press, New York.

    Google Scholar 

  • Charles-Dominique, P. 1977. Ecology and Behaviour of Nocturnal Primates. Columbia University Press, New York.

    Google Scholar 

  • Cheney, D. L., and Seyfarth, R. M. 1990. How Monkeys See the World. University of Chicago Press, Chicago.

    Google Scholar 

  • Clutton-Brock, T. H., and Harvey, P. H. 1980. Primates, brains and ecology. J. Zool. 190:309–323.

    Article  Google Scholar 

  • Covert, H. H. 1986. Biology of early Cenozoic primates, in: D. R. Swindler and J. Erwin (eds.), Comparative Primate Biology, Vol. 1, pp. 335–359. Liss, New York.

    Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A. 1972. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37:21–51.

    Article  PubMed  CAS  Google Scholar 

  • Dagosto, M. 1988. Implications of postcranial evidence for the origin of euprimates.J Hum. Evol. 17:35–56.

    Article  Google Scholar 

  • Dart, R. A. 1934. The dual structure of the neopallium: Its history and significance. J. Anat. 69:3–19.

    PubMed  CAS  Google Scholar 

  • Darwin, C. 1859. On the Origin of Species. John Murray, London. [Facsimile of first edition: Harvard University Press, Cambridge, Mass. 1984.]

    Google Scholar 

  • Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London. [Facsimile edition: Princeton University Press, Princeton, N.J., 1981.]

    Book  Google Scholar 

  • Diamond, I. T., and Hall, W. C. 1969. Evolution of neocortex. Science 164:251–262.

    Article  PubMed  CAS  Google Scholar 

  • Dum, R. P., and Strick, P. L. 1990. Premotor areas: Nodal points for parallel efferent systems involved in the central control of movement, in: D. R. Humphrey and H.-J. Freund (eds.), Motor Control: Concepts and Issues, pp. 383–397. Wiley, New York.

    Google Scholar 

  • Elliot Smith, G. E. 1897. The origin of the corpus callosum; a comparative study of the hippocampal region of the cerebrum of Marsupalia and certain Chiroptera. Trans. Linn. Soc. London 2nd Ser. Zool. 7:47–69.

    Article  Google Scholar 

  • Elliot Smith, G. 1910. Some problems relating to the evolution of the brain. Lancet 1910–1:1–6; 147–153; 221–227.

    Article  Google Scholar 

  • Elliot Smith, G. E. 1919. A preliminary note on the morphology of the corpus striatum and the origin of the neopallium. J. Anat. 53:271–291.

    Google Scholar 

  • Elliot Smith, G. 1924. The Evolution of Man: Essays. Oxford University Press, London.

    Google Scholar 

  • Falk, D. 1982. Primate neuroanatomy: An evolutionary perspective, in: F. Spencer (ed.), A History of Physical Anthropology, 1930–1980, pp. 75–103. Academic Press, New York.

    Google Scholar 

  • Fleagle, J. G., and Jungers, W. L. 1982. Fifty years of higher primate phylogeny, in: F. Spencer (ed.), A History of Physical Anthropology, 1930–1980, pp. 187–230. Academic Press, New York.

    Google Scholar 

  • Fodor, J. A. 1983. The Modularity of Mind. MIT/Bradford Books, Cambridge, Mass.

    Google Scholar 

  • Frahm, H. D., Stephan, H., and Baron, G. 1984. Comparison of brain structure volumes in Insectivora and Primates. V. Area striata (AS). J. Hirnforsch. 25:537–557.

    PubMed  CAS  Google Scholar 

  • Fuster, J. M. 1989. The Prefrontal Cortex, 2nd ed. Raven Press, New York.

    Google Scholar 

  • Gardner, H. 1983. Frames of Mind. Basic Books, New York.

    Google Scholar 

  • Garraghty, P. E., and Kaas, J. H. 1991. Functional reorganization in adult monkey thalamus after peripheral nerve injury. NeuroReport 2:747–750.

    CAS  Google Scholar 

  • Garraghty, P. E., Florence, S. L., Tenhula, W. N., and Kaas, J. H. 1991. Parallel thalamic activation of the first and second somatosensory areas in prosimian primates and tree shrews. J. Comp. Neurol. 311:289–299.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., and Berger, B. 1991. Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann. Neurol. 30:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci, M., and Rizzolatti, G. 1990. Cortical motor control of arm and hand movements, in: M. A. Goodale (ed.), Vision and Action: The Control of Grasping, pp. 147–162. Ablex, Norwood, N.J.

    Google Scholar 

  • Goldman-Rakic, P. S. 1987. Circuitry of primate prefrontal cortex and the regulation of behavior by representational memory, in: V. B. Mountcastle, F. Plum, and S. R. Geiger (eds.), Handbook of PhysiologyThe Nervous System, Vol. 5, pp. 373–417. American Physiological Society, Bethesda.

    Google Scholar 

  • Gould, S.J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain, in: F. S. Szalay (ed.), Contributions to Primate Paleobiology, pp. 244–292. Karger, Basel.

    Google Scholar 

  • Gould, S. J., and Eldredge, N. 1977. Punctuated equilibrium: The tempo and mode of evolution reconsidered. Paleobiology 3:23–40.

    Google Scholar 

  • Harting, J. K., Hall, W. C., and Diamond, I. T. 1972. Evolution of the pulvinar. Brain Behav. Evol. 6:424–452.

    Article  PubMed  CAS  Google Scholar 

  • Harting, J. K., Diamond, I. T., and Hall, W. C. 1973. Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis).J. Comp. Neurol. 150:393–440.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., and Campbell, C. B. G. 1969. Scala naturae: Why there is no theory in comparative psychology. Psychol. Rev. 76:337–350.

    Article  Google Scholar 

  • Hofman, M. A. 1982. Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav. Evol. 20:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, R. L., Jr. 1966a. Cranial capacity, neural reorganization, and hominid evolution: A search for more suitable parameters. Am. Anthropol. 68:103–121.

    Article  Google Scholar 

  • Holloway, R. L., Jr. 1966b. Cranial capacity and neuron number: A critique and proposal. Am. J. Phys. Anthropol. 25:305–314.

    Article  PubMed  Google Scholar 

  • Holloway, R. L., Jr., and Post, D. G. 1982. The relativity of relative brain measures and hominid mosaic evolution, in: E. Armstrong and D. Falk (eds.), Primate Brain Evolution, pp. 57–76. Plenum Press, New York.

    Chapter  Google Scholar 

  • Jeannerod, M. 1985. The Brain Machine. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Jerison, H.J. 1961. Quantitative analysis of evolution of the brain in mammals. Science 133:1012–1024.

    Article  PubMed  CAS  Google Scholar 

  • Jerison, H. J. 1973. Evolution of the Brain and Intelligence. Academic Press, New York.

    Google Scholar 

  • Johnson, J. I. 1990. Comparative development of somatic sensory cortex, in: E. G. Jones and A. Peters (eds.), Cerebral Cortex. Vol. 8B, pp. 335–449. Plenum Press, New York.

    Chapter  Google Scholar 

  • Johnson, J. I., Switzer, R. C., and Kirsch, J. A. W. 1982. Phylogeny through brain traits: The distribution of categorizing characters in contemporary mammals. Brain Behav. Evol. 20:97–117.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H. 1977. Sensory representations in mammals, in: G. S. Stent (ed.), Function and Formation of Neural Systems, pp. 65–89. Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Kaas, J. H. 1982. The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? in: W. P. Neff (ed.), Contributions to Sensory Physiology, pp. 201–240. Academic Press, New York.

    Google Scholar 

  • Kaas, J. H. 1986. The structural basis for information processing in the primate visual system, in: J. D. Pettigrew, K. J. Sanderson, and W. R. Levick (eds.), Visual Neuroscience, pp. 315–340. Cambridge University Press, London.

    Google Scholar 

  • Kaas, J. H. 1987a. The organization and evolution of neocortex, in: S. P. Wise (ed.), Higher Brain Function: Recent Explorations of the Brain’s Emergent Properties, pp. 347–378. Wiley, New York.

    Google Scholar 

  • Kaas, J. H. 1987b. The organization of neocortex in mammals: Implications for theories of brain function. Annu. Rev. Psychol. 38:129–151.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H. 1989. Why does the brain have so many visual areas? J. Cogn. Neurosci. 1:121–135.

    Article  Google Scholar 

  • Kaas, J. H. 1991. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14:137–167.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., and Preuss, T. M. 1993. Archontan affinities as reflected in the visual system, in: F. S. Szalay, M. J. Novacek, and M. C. McKenna (eds.), Mammalian Phylogeny. Springer-Verlag, Berlin (in press).

    Google Scholar 

  • Kaas, J. H., Harting, J. K., and Guillery, R. W. 1973. Representation of the complete retina in the contralateral superior colliculus of some mammals. Brain Res. 65:343–346.

    Article  Google Scholar 

  • Kemper, T L., and Galaburda, A. M. 1984. Principles of cytoarchitectonics, in: A Peters and E. G. Jones (eds.), Cerebral Cortex, Vol. 1, pp. 35–57. Plenum Press, New York.

    Google Scholar 

  • Kirsch, J. A. W., and Johnson, J. I. 1983. Phylogeny through brain traits: Trees generated by neural characters. Brain Behav. Evol. 22:60–69.

    Article  PubMed  CAS  Google Scholar 

  • Kobler, J. B., Isbey, S. F., and Casseday, J. H. 1987. Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. Science 236:824–826.

    CAS  Google Scholar 

  • Kolb, B., 1984. Functions of the frontal cortex of the rat: A comparative review. Brain Res. Revs. 8:65–98.

    Article  Google Scholar 

  • Kolb, B., and Whishaw, I. Q. 1985. Fundamentals of Human Neuropsychology, 2nd ed. Freeman, San Francisco.

    Google Scholar 

  • Krettek, J. E., and Price, J. L. 1977. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol. 172:687–722.

    Article  PubMed  CAS  Google Scholar 

  • Lane, R. H., Allman, J. M., and Kaas, J. H. 1973. The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus) and the bush baby (Galago senegalensis). Brain Res. 60:335–349.

    Article  PubMed  CAS  Google Scholar 

  • Lashley, K. S. 1929. Brain Mechanisms and Intelligence. University of Chicago Press, Chicago.

    Google Scholar 

  • Lashley, K. S. 1949. Persistent problems in the evolution of mind. Q. Rev. Biol. 24:28–42.

    Article  CAS  Google Scholar 

  • Lashley, K. S., and Clark, G. 1946. The cytoarchitecture of the cerebral cortex of Ateles: A critical examination of architectonic studies. J. Comp. Neurol. 85:223–306.

    Article  PubMed  CAS  Google Scholar 

  • La Vail, J. H., and La Vail, M. M. 1974. The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: A light and electron microscopic study. J. Comp. Neurol. 157:303–358.

    Article  Google Scholar 

  • Le Gros Clark, W. E. 1932. The structure and connections of the thalamus. Brain 55:406–470.

    Article  Google Scholar 

  • Le Gros Clark, W. E. 1941. Observations on the association fibre system of the visual cortex and the central representation of the retina. J. Anat. 75:419–433.

    PubMed  Google Scholar 

  • Le Gros Clark, W. E. 1956. Observations on the structure and organization of olfactory receptors in the rabbit. Yale J. Biol. Med. 29:83–95.

    Google Scholar 

  • Le Gros Clark, W. E. 1959. The Antecedents of Man. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Livingstone, M., and Hubel, D. 1988. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–749.

    Article  PubMed  CAS  Google Scholar 

  • Luria, A. R. 1973. The Working Brain. Basic Books, New York.

    Google Scholar 

  • McGeer, P. L., Eccles, J. C., and McGeer, E. G. 1987. Molecular Neurobiology of the Mammalian Brain, 2nd ed. Plenum Press, New York.

    Book  Google Scholar 

  • Macphail, E. M. 1982. Brain and Intelligence in Vertebrates. Oxford University Press, London.

    Google Scholar 

  • Macphail, E. M. 1987. The comparative psychology of intelligence. Behav. Brain Sci. 10:645–656.

    Article  Google Scholar 

  • Markowitsch, H. J., and Pritzel, M. 1979. The prefrontal cortex: Projection area of the thalamic mediodorsal nucleus? Physiol. Psychol. 7:1–6.

    Google Scholar 

  • Martin, R. D. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. D. 1990. Primate Origins and Evolution. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Martin, R. D., and Harvey, P. H. 1985. Brain size allometry. Ontogeny and phylogeny, in: W. L. Jungers (ed.), Size and Scaling in Primate Biology, pp. 147–173. Plenum Press, New York.

    Google Scholar 

  • Maunsell, J. H. R., and Newsome, W. T. 1987. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10:363–401.

    Article  PubMed  CAS  Google Scholar 

  • Morel, A., and Kaas, J. H. 1992. Subdivisions and connections of auditory cortex in owl monkeys. J. Comp. Neurol. 318:27–63.

    Article  PubMed  CAS  Google Scholar 

  • Morgane, P. J., Jacobs, M. S., and Galaburda, A. 1985. Conservative features of neocortical evolution in dolphin brains. Brain Behav. Evol. 26:176–184.

    Article  PubMed  CAS  Google Scholar 

  • Mrzljak, L., and Goldman-Rakic, P. S. 1992. Acetylcholinesterase reactivity in cerebral cortex: Light and electron microscopic analysis in the adult monkey and human. J. Comp. Neurol. 364:261–281.

    Article  Google Scholar 

  • Nudo, R. J., and Masterton, R. B. 1990. Descending pathways to the spinal cord. III: Sites of origin of the corticospinal tract. J. Comp. Neurol. 296:559–583.

    Article  PubMed  CAS  Google Scholar 

  • Okinaki, S., Yoshikawa, M., Uono, M., Muro, T., Mozai, T., Igata, A., Tanabe, H., Ueda, S., and Tomanaga, M. 1961. Distribution of Cholinesterase activity in the human cerebral cortex. Am. J.Phys.Med. 40:135–146.

    Google Scholar 

  • Orbach, J. 1982a. At the Yerkes Laboratories of Primate Biology, Orange Park, Florida, in: J. Orbach (ed.), Neuropsychology after Lashley, pp. 21–51. Erlbaum, Hillside, N.J.

    Google Scholar 

  • Orbach, J. 1982b. The legacy of Brain Mechanisms and Intelligence, in: J. Orbach (ed.), Neuropsychology after Lashley, pp. 1–20. Erlbaum, Hillside, N.J.

    Google Scholar 

  • Passingham, R. E. 1982. The Human Primate. Freeman, San Francisco.

    Google Scholar 

  • Perrett, D. I., Mistlin, A. J., and Chitty, A. J. 1987. Visual neurones responsive to faces. Trends Neurosci. 10:358–364.

    Article  Google Scholar 

  • Pettigrew, J. D. 1986. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. 1991. Wings or brain? Convergent evolution in the origins of bats. Syst. Zool. 40:199–216.

    Article  Google Scholar 

  • Pettigrew, J. D., and Cooper, H. M. 1986. Aerial primates: Advanced visual pathways in megabats and flying lemurs. Soc. Neurosci. Abstr. 12:1035.

    Google Scholar 

  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S.K., Hall, L. S., McAnally, K. I., and Cooper, H. M. 1989. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chirop- tera and Primates). Philos. Trans. R. Soc. London Ser. B 325:489–559.

    Article  CAS  Google Scholar 

  • Phillips, C. G., Zeki, S., and Barlow, H. B. 1984. Localization of function in the cerebral cortex. Past, present, and future. Brain 107:328–361.

    Article  Google Scholar 

  • Povinelli, D. J. 1993. Reconstructing the evolution of mind. Am. Psychol, in press.

    Google Scholar 

  • Preuss, T. M. 1990. The granular frontal association cortex of the strepsirhine primate Galago: Comparative anatomy and evolutionary implications. Ph.D. dissertation, Yale University.

    Google Scholar 

  • Preuss, T. M., and Goldman-Rakic, P. S. 1989. Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex. J. Comp. Neurol. 282:293–316.

    Article  PubMed  CAS  Google Scholar 

  • Preuss, T. M., and Goldman-Rakic, P. S. 1991a. Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J. Comp. Neurol 310:507–549.

    Article  PubMed  CAS  Google Scholar 

  • Preuss, T. M., and Goldman-Rakic, P. S. 1991b. Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca.J. Comp. Neurol. 310:475–506.

    Article  CAS  Google Scholar 

  • Preuss, T. M., and Goldman-Rakic, P. S. 1991c. Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J. Comp. Neurol. 310:429–474.

    Article  CAS  Google Scholar 

  • Preuss, T. M., Stepniewska, I., and Kaas, J. H. 1992. Microstimulation studies of motor cortical organization in lorisid primates. Eur. J. Neurosci (Suppl.) 5:174.

    Google Scholar 

  • Radinsky, L. B. 1970. The fossil evidence of prosimian brain evolution, in: C. R. Noback and W. Montagna (eds.), The Primate Brain, pp. 209–224. Appleton-Century-Crofts, NewYork.

    Google Scholar 

  • Radinsky, L. B. 1975. Primate brain evolution. Am. Sci. 63:656–663.

    PubMed  CAS  Google Scholar 

  • Rasmussen, D. T 1990. Primate origins: Lessons from a neotropical marsupial. Am. J. Primatol. 22:263–277.

    Article  Google Scholar 

  • Richards, R. J. 1987. Darwin and the Emergence of Evolutionary Theories of Mind and Behavior. University of Chicago Press, Chicago.

    Google Scholar 

  • Rizzolatti, G., and Gentilucci, M. 1988. Motor and visual-motor functions of the premotor cortex, in: P. Rakic and W. Singer (eds.), Neurobiology of Neocortex, pp. 269–295. Wiley, Chichester.

    Google Scholar 

  • Roland, P. E. 1984. Metabolic measurements of the working frontal cortex in man. Trends Neurosci. 7:430–435.

    Article  Google Scholar 

  • Rolls, E. T. 1984. Neurones in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum. Neurobiol. 3:209–222.

    PubMed  CAS  Google Scholar 

  • Rose, J. E., and Woolsey, C. N. 1948. The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res. Publ. Nerv. Ment. Dis. 27:210–232.

    Google Scholar 

  • Rowe, M. 1990. Organization of the cerebral cortex in monotremes and marsupials, in: E. G. Jones and A. Peters (eds.), Cerebral Cortex, Vol. 8B, pp. 263–334. Plenum Press, New York.

    Chapter  Google Scholar 

  • Stephan, H. 1972. Evolution of primate brains: A comparative anatomical investigation, in: R. Tuttle (ed.), The Functional and Evolutionary Biology of Primates, pp. 155–174. Aldine, Chicago.

    Google Scholar 

  • Stephan, H., and Andy, O. J. 1969. Quantitative comparative neuroanatomy of primates: An attempt at a phylogenetic interpretation. Ann. N.Y. Acad. Sci. 167:370–387.

    Article  Google Scholar 

  • Stephan, H., Baron, G., and Frahm, H. D. 1988. Comparative size of brains and brain components, in: H. D. Steklis and J. Erwin (eds.), Comparative Primate Biology, Vol. 4, pp. 1–38. Liss, New York.

    Google Scholar 

  • Stepniewska, I., Preuss, T. M., and Kaas, J. H. 1993. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (Ml) of owl monkeys. J. Comp. Neurol. 330:238–271.

    Article  PubMed  CAS  Google Scholar 

  • Stuss, D. T., and Benson, D. F. 1986. The Frontal Lobes. Raven Press, New York.

    Google Scholar 

  • Sussman, R. W. 1991. Primate origins and the evolution of angiosperms. Am. J. Primatol. 23:209–223.

    Article  Google Scholar 

  • Szalay, F. S., and Dagosto, M. 1988. Evolution of hallucial grasping in the primates. J. Hum. Evol. 17:1–33.

    Article  Google Scholar 

  • Thiele, A., Vogelsang, M., and Hoffmann, K.-P. 1991. Pattern of retinotectal projection in the megachiropteran bat Rousettus aegyptiacus. J Comp. Neurol. 314:671–683.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, F. 1928. The Brain, from Ape to Man, 2 volumes. Harper & Row (Hoeber), New York.

    Google Scholar 

  • Van Essen, D. C. 1985. Functional organization of primate visual cortex, in: A. Peters and E. G. Jones (eds.), Cerebral Cortex, Vol. 3, pp. 259–329. Plenum Press, New York.

    Google Scholar 

  • Walsh, K. 1987. Neuropsychology: A Clinical Approach, 2nd ed. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Wood Jones, F. 1916. Arboreal Man. Arnold, London.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Preuss, T.M. (1993). The Role of the Neurosciences in Primate Evolutionary Biology: Historical Commentary and Prospectus. In: MacPhee, R.D.E. (eds) Primates and Their Relatives in Phylogenetic Perspective. Advances in Primatology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2388-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2388-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2390-5

  • Online ISBN: 978-1-4899-2388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics