Skip to main content

Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors

  • Chapter

Abstract

This review critically analyzes current practice in the design, calibration, sensitivity determination, and operation of alternating-field susceptometers, and examines applications in magnetic susceptibility measurements of superconductors. Critical parameters of the intrinsic and coupling components of granular superconductors may be deduced from magnetic susceptibility measurements. The onset of intrinsic diamagnetism corresponds to the initial decrease in electrical resistivity upon cooling, but the onset of intergranular coupling coincides with the temperature for zero resistivity. The lower critical field may be determined by the field at which the imaginary part of susceptibility increases from zero. Unusual features in the susceptibility of superconductor films, such as a magnetic moment that is independent of film thickness and the variation of susceptibility with angle, are related to demagnetization. Demagnetizing factors of superconductor cylinders are significantly different from those commonly tabulated for materials with small susceptibilities. Rules for the susceptibility of mixtures with specific demagnetizing factors are used to estimate the volume fraction of superconducting grains in sintered materials. Common misunderstandings of the Meissner effect, magnetic units, and formula conversions are discussed. There is a comprehensive summary of critical-state formulas for slabs and cylinders, including new equations for complex susceptibility in large alternating fields. Limitations on the use of the critical-state model for deducing critical current density are listed and the meaning of the imaginary part of susceptibility is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Thomson, “Reprint of Papers on Electrostatics and Magnetism,” Macmillan and Co., London (1872), p. 472.

    Google Scholar 

  2. In his original paper, Phil. Mag., ser. 4, 1:177 (1851), Thomson used the term “inductive capacity” for susceptibility, which seems to associate susceptibility with the magnetic induction B. He abandoned this term by 1872, possibly on the suggestion of Maxwell. Maxwell used the term “magnetic inductive capacity” for permeability in “A Treatise on Electricity and Magnetism,” first published in 1873.

    Google Scholar 

  3. W. Meissner and R. Ochsenfeld, Naturwissenschaften 21:787 (1933).

    Article  ADS  Google Scholar 

  4. R. A. Hein, Phys. Rev. B 33:7539 (1986).

    Article  ADS  Google Scholar 

  5. D. Shoenberg, “Superconductivity,” Cambridge University Press, Cambridge, U.K. (1962), pp. 43–47.

    Google Scholar 

  6. F. G. A. Tarr and J. O. Wilhelm, Can. J. Res. 12:265 (1935).

    Article  Google Scholar 

  7. D. Shoenberg, Proc. Cambridge Phil. Soc. 33:260 (1937).

    Article  ADS  Google Scholar 

  8. P. B. Alers, J. W. McWhirter, and C. F. Squire, in: “Low-Temperature Physics,” Nat. Bur. Stand. (U.S.), Circular 519 (1952), pp. 85–88.

    Google Scholar 

  9. M. B. Elzinga and C. Uher, Phys. Rev. B 32:88 (1985).

    Article  ADS  Google Scholar 

  10. R. A. Hein and R. L. Falge, Jr., Phys. Rev. 123:407 (1961).

    Article  ADS  Google Scholar 

  11. L. Krusin-Elbaum, A. P. Malozemoff, and Y. Yeshurun, in: “High-Temperature Superconductors,” M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller, eds., Materials Research Society, Pittsburgh, Symp. Proc. 99:221 (1988).

    Google Scholar 

  12. L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer, and F. Holtzberg, Physica C 153–155:1469 (1988).

    Google Scholar 

  13. V. I. Aleksandrov, M. A. Borik, V. G. Veselago, V. V. Voronov, Yu. K. Voron’ko, P. A. Ivanov, G. V. Maksimova, V. E. Makhotkin, V. A. Myzina, V. V. Osiko, A. M. Prokhorov, V. M. Tatarintsev, V. T. Udovenchik, V. A. Fradkov, and M. A. Chexmkov, JETP Lett. (Suppl.) 46:S77 (1987) [Pis’ma Zh. Eksp. Teor. Fiz. (Prilozh.) 46:90 (1987)].

    ADS  Google Scholar 

  14. V. V. Alexandrov, V. V. Borisovskii, T. A. Fedotova, L. M. Fisher, N. V. Il’in, O. K. Smirnova, I. F. Voloshin, M. A. Baranov, and V. S. Gorbachev, Physica C 173:458 (1991).

    Article  ADS  Google Scholar 

  15. S. Ruppel, G. Michels, H. Geus, J. Kaienborn, W. Schlabitz, B. Roden, and D. Wohlleben, Physica C 174:233 (1991).

    Article  ADS  Google Scholar 

  16. M. Tinkham, “Introduction to Superconductivity,” Krieger Publishing, Malabar, Florida (1980), pp. 244–250.

    Google Scholar 

  17. R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27:475 (1987).

    Article  Google Scholar 

  18. D.-X. Chen, R. B. Goldfarb, J. Nogués, and K. V. Rao, J. Appl. Phys. 63:980 (1988).

    Article  ADS  Google Scholar 

  19. D.-X. Chen, J. Nogués, N. Karpe, and K. V. Rao, Kexue Tongbao (Beijing, English edition) 33:560 (1988).

    Google Scholar 

  20. H. Mazaki, M. Takano, R. Kanno, and Y. Takeda, Jpn. J. Appl. Phys. 26:L780 (1987).

    Google Scholar 

  21. T. Ishida and H. Mazaki, Jpn. J. Appl. Phys. 26:L1296 (1987).

    Article  ADS  Google Scholar 

  22. H. Mazaki, M. Takano, Y. Ikeda, Y. Bando, R. Kanno, Y. Takeda, and O. Yamamoto, Jpn. J. Appl. Phys. 26:L1749 (1987).

    Article  ADS  Google Scholar 

  23. J. Garcia, C. Rillo, F. Lera, J. Bartolomé, R. Navarro, D. H. A. Blank, and J. Flokstra, J. Magn. Magn. Mater. 69:L225 (1987).

    Article  ADS  Google Scholar 

  24. R. Renker, I. Apfelstedt, H. Küpfer, C. Politis, H. Rietschel, W. Schauer, H. Wühl, U. Gottwick, H. Kneissel, U. Rauchschwalbe, H. Spille, and F. Steglich, Z Phys. B 67:1 (1987).

    Article  ADS  Google Scholar 

  25. H. Küpfer, I. Apfelstedt, W. Schauer, R. Flükiger, R. Meier-Hirmer, and H. Wühl, Z. Phys. B 69:159 (1987).

    Article  ADS  Google Scholar 

  26. J. R. Cave, A. Février, Hoang Gia Ky, and Y. Laumond, IEEE Trans. Magn. 23:1732 (1987).

    Article  ADS  Google Scholar 

  27. G M. Bastuscheck, R. A. Buhrman and J. C. Scott, Phys. Rev. B 24:6707 (1981).

    Article  ADS  Google Scholar 

  28. G Ebner and D. Stroud, Phys. Rev. B 31:165 (1985).

    Article  ADS  Google Scholar 

  29. P. England, F. Goldie, and A. D. Caplin, J. Phys. F: Met. Phys. 17:447 (1987).

    Article  ADS  Google Scholar 

  30. Y. M. Chiang, J. A. S. Ikeda, and A. Roshko, in: “Ceramic Superconductors II,” M. F. Yan, ed., American Ceramics Society, Westerville, Ohio (1988), p. 607.

    Google Scholar 

  31. S. E. Babcock, T. F. Kelly, P. J. Lee, J. M. Seuntjens, L. A. Lavanier, and D. C. Larbalestier, Physica C 152:25 (1988).

    Article  ADS  Google Scholar 

  32. P. Dubots and J. Cave, Cryogenics 28:661 (1988).

    Article  Google Scholar 

  33. D. K. Finnemore, R. N. Shelton, J. R. Clem, R. W. McCallum, H. C. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan, Phys. Rev. B 35:5319 (1987).

    Article  ADS  Google Scholar 

  34. J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys. 62:4821 (1987).

    Article  ADS  Google Scholar 

  35. M. Suenaga, A. Ghosh, T. Asano, R. L. Sabatini, and A. R. Moodenbaugh, in: “High Temperature Superconductors,” D. U. Gubser and M. Schluter, eds., Materials Research Society, Pittsburgh, EA-11:247 (1987).

    Google Scholar 

  36. D. C. Larbalestier, M. Daeumling, X. Cai, J. Seuntjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willis, H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom, and R. Joynt, J. Appl. Phys. 62, 3308 (1987).

    Article  ADS  Google Scholar 

  37. T. Ishida and H. Mazaki, J. Appl. Phys. 52:6798 (1981).

    Article  ADS  Google Scholar 

  38. T. Ishida, K. Kanoda, H. Mazaki, and I. Nakada, Phys. Rev. B 29:1183 (1984).

    Article  ADS  Google Scholar 

  39. H. Mazaki and T. Ishida, Jpn. J. Appl Phys. 26:L1508 (1987).

    Article  ADS  Google Scholar 

  40. Y. Oda, I. Nakada, T. Kohara, H. Fujita, T. Kaneko, H. Toyoda, E. Sakagami, and K. Asayama, Jpn. J. Appl. Phys. 26:L481 (1987).

    Article  ADS  Google Scholar 

  41. E. Babic, Z. Marohnic, D. Drobac, M. Prester, and N. Brničevic, Physica C 153-155: 1511 (1988).

    Article  ADS  Google Scholar 

  42. H. M. Ledbetter, S. A. Kim, R. B. Goldfarb, and K. Togano, Phys. Rev. B 39:9689 (1989).

    Article  ADS  Google Scholar 

  43. The material described in Fig. 2 was used in an interlaboratory comparison sponsored by the Defense Advanced Research Projects Agency (DARPA) in 1989. Participants were asked to determine T c by susceptibility and report “the midpoint of the full inductive transition,” presumably referring to the coupling transition. No guidance was given as to measuring field. The 16 participants reported Tc’s ranging from 83 to 94 K. Most of the systematic differences in the measurements were likely due to different measuring fields used by the participants.

    Google Scholar 

  44. X. Obradors, C. Rillo, M. Vallet, A. Labarta, J. Fontcuberta, J. Gonzalez-Calbet, and F. Lera, Physica C 153-155:389 (1988).

    Article  ADS  Google Scholar 

  45. H. Morita, K. Watanabe, Y. Murakami, S. Kondo, Y. Obi, K. Noto, H. Fujimori, and Y. Muto, Physica B 148:449 (1987).

    Article  Google Scholar 

  46. H. Nobumasa, K. Shimizu, Y. Kitano, and T. Kawai, Jpn. J. Appl. Phys. 27:L846 (1988).

    Article  ADS  Google Scholar 

  47. C. E. Gough, J. Physique Colloq. 49:C8–2075 (1988).

    Google Scholar 

  48. A. K. Sarkar, B. Kumar, I. Maartense, and T. L. Peterson, J. Appl. Phys. 65:2392 (1989).

    Article  ADS  Google Scholar 

  49. A. Mehdaoui, B. Loegel, and D. Bolmont, J. Appl. Phys. 66:1497 (1989).

    Article  ADS  Google Scholar 

  50. E. C. Stoner, Phil Mag., ser. 7, 36:803 (1945).

    Google Scholar 

  51. J. A. Osborn, Phys. Rev. 67:351 (1945).

    Article  ADS  Google Scholar 

  52. D.-X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE Trans. Magn. 27:3601 (1991).

    Article  ADS  Google Scholar 

  53. T. T. Taylor, J. Res. Nat. Bur. Stand. (U.S.) 64B:199 (1960).

    Article  Google Scholar 

  54. D.-X. Chen, “Physical Basis of Magnetic Measurements,” China Mechanical Industry, Beijing (1985), pp. 139–140.

    Google Scholar 

  55. S. D. Murphy, K. Renouard, R. Crittenden, and S. M. Bhagat, Solid State Commun. 69:367 (1989).

    Article  ADS  Google Scholar 

  56. J. Ferreirinho, S. J. Lee, S. J. Campbell, and A. Calka, J. Magn. Magn. Mater. 88:281 (1990).

    Article  ADS  Google Scholar 

  57. J. Clerk Maxwell, “A Treatise on Electricity and Magnetism,” 3rd Ed., Vol. 2, Clarendon Press, Oxford (1892), pp. 57–58 and pp. 476-477. Reprinted, Dover Publications, New York (1954).

    Google Scholar 

  58. A. M. Campbell, F. J. Blunt, J. D. Johnson, and P. A. Freeman, Cryogenics 31:732 (1991).

    Article  Google Scholar 

  59. R. Navarro and L. J. Campbell, unpublished, 1991.

    Google Scholar 

  60. T. C. Choy and A. M. Stoneham, J. Phys.: Condens. Matter 2:939 (1990).

    Article  ADS  Google Scholar 

  61. J. R. Clem and V. G. Kogan, Jpn. J. Appl. Phys. Suppl. 26-3:1161 (1987).

    Google Scholar 

  62. T. Ishida and H. Mazaki, Jpn. J. Appl. Phys. 26:L2003 (1987).

    Article  ADS  Google Scholar 

  63. G. Aeppli, R. J. Cava, E. J. Ansaldo, J. H. Brewer, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and R. F. Kiefl, Phys. Rev. B 35:7129 (1987).

    Article  ADS  Google Scholar 

  64. Y. J. Uemura, V. J. Emery, A. R. Moodenbaugh, M. Suenaga, D. C. Johnston, A. J. Jacobson, J. T. Lewandowski, J. H. Brewer, R. F. Kiefl, S. R. Kreitzman, G. M. Luke, T. Riseman, C. E. Stronach, W. J. Kossler, J. R. Kempton, X. H. Yu, D. Opie, and H. Schone, Phys. Rev. B 38:909 (1988).

    Article  ADS  Google Scholar 

  65. J. R. Cooper, C. T. Chu, L. W. Zhou, B. Dunn, and G. Grüner, Phys. Rev. B 37:638 (1988).

    Article  ADS  Google Scholar 

  66. R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. 58:1698 (1987).

    Article  Google Scholar 

  67. P. M. Grant, R. B. Beyers, E. M. Engler, G. Lim, S. S. P. Parkin, M. L. Ramirez, V. Y. Lee, A. Nazzal, J. E. Vasquez, and R. J. Savoy, Phys. Rev. B 35:7242 (1987).

    Article  ADS  Google Scholar 

  68. A. J. Panson, A. I. Braginski, J. R. Gavaler, J. K. Hulm, M. A. Janoko, H. C. Pohl, A. M. Stewart, J. Talvacchio, and G. R. Wagner, Phys. Rev. B 35:8874 (1987).

    Article  Google Scholar 

  69. A. C. Rose-Innes and E. H. Rhoderick, “Introduction to Superconductivity,” 2nd Ed., Pergamon Press, Oxford, U.K. (1978), p. 93–97.

    Google Scholar 

  70. A. L. Schawlow and G. E. Devlin, Phys. Rev. 113:120 (1959).

    Article  ADS  Google Scholar 

  71. D.-X. Chen, Y. Mei, and H. L. Luo, Physica C 167:317 (1990).

    Article  ADS  Google Scholar 

  72. D.-X. Chen, A. Sanchez, T. Puig, L. M. Martinez, and J. S. Munoz, Physica C 168:652 (1990).

    Article  ADS  Google Scholar 

  73. Ref. 57, p. 70. Maxwell probably meant to refer to Art. 429 in this quotation.

    Google Scholar 

  74. R. B. Goldfarb, Cryogenics 26:621 (1986).

    Article  Google Scholar 

  75. J. A. Cape and J. M. Zimmerman, Phys. Rev. 153:416 (1967).

    Article  ADS  Google Scholar 

  76. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, “Electrodynamics of Continuous Media,” 2nd Ed., Pergamon Press, Oxford, U.K. (1984), p. 185.

    Google Scholar 

  77. V. F. Elesin, I. V. Zakharchenko, A. A. Ivanov, A. P. Menushenkov, A. A. Sinchenko, and S. V. Shavkin, Supercond., Phys. Chem. Technol. 3:1376 (1990) [Sverkhprovodn., Fiz. Khim. Tekh. 3: 1704 (1990)].

    Google Scholar 

  78. P. G. de Gennes, “Superconductivity of Metals and Alloys,” Addison-Wesley, Redwood City, California (1989), pp. 60–63.

    Google Scholar 

  79. E. M. Gyorgy, AT&T Bell Laboratories, personal communication, 1990.

    Google Scholar 

  80. H. Teshima, A. Oishi, H. Izumi, K. Ohata, T. Morishita, and S. Tanaka, Appl. Phys. Lett. 58:2833 (1991).

    Article  ADS  Google Scholar 

  81. J. A. Agostinelli, G. R. Paz-Pujalt, and A. K. Mehrotra, Physica C 156:1208 (1988).

    Article  Google Scholar 

  82. M. Lelental, S. Chen, S.-Tong Lee, G. Braunstein, and T. Blanton, Physica C 167:614 (1990).

    Article  ADS  Google Scholar 

  83. D. Majumdar and M. Lelental, Physica C 161:145 (1989).

    Article  ADS  Google Scholar 

  84. T. Blanton, M. Lelental, C. L. Barnes, Physica C 173:152 (1991).

    Article  ADS  Google Scholar 

  85. R. B. Goldfarb, Magnetic units and material specification, in: “Concise Encyclopedia of Magnetic and Superconducting Materials,” J. E. Evetts, ed., Pergamon Press, Oxford, U.K. (1992).

    Google Scholar 

  86. C. P. Bean, Rev. Mod. Phys. 36:31 (1964).

    Article  ADS  Google Scholar 

  87. H. London, Phys. Lett. 6:162 (1963).

    Article  ADS  Google Scholar 

  88. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 129:528 (1963).

    Article  ADS  Google Scholar 

  89. T. Ishida and R. B. Goldfarb, Phys. Rev. B 41:8939 (1990).

    ADS  Google Scholar 

  90. D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. 66:2489 (1989).

    Article  ADS  Google Scholar 

  91. Ref. 76, pp. 204-205.

    Google Scholar 

  92. J. R. Clem, “AC Losses in Type-II Superconductors,” Ames Lab. Tech. Rep. IS-M 280, Iowa State University, Ames, Iowa (1979), Eqs. (25). Reprinted with additions in: “Magnetic Susceptibility of Superconductors and Other Spin Systems,” R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, eds., Springer Science+Business Media New York (1992).

    Google Scholar 

  93. C. P. Bean, Rev. Mod. Phys. 36:31 (1964).

    Article  ADS  Google Scholar 

  94. These slab equations for χ′ and χ″ may be obtained by simplification of Eqs. (9) in: L. Ji, R. H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham, Phys. Rev. B 40:10936 (1989).

    Google Scholar 

  95. C. P. Bean, Phys. Rev. Lett. 8:250 (1962).

    Article  ADS  MATH  Google Scholar 

  96. W. A. Fietz and W. W. Webb, Phys. Rev. 178:657 (1969).

    Article  ADS  Google Scholar 

  97. These axial cylinder equations for χ′ and χ″ may be obtained by simplification of Eqs. (118)-(124) in Ref. 92. Note that 2 sin−1(x −1/2) = cos−l-2/X).

    Google Scholar 

  98. R. B. Goldfarb and A. F. Clark, IEEE Trans. Magn. 21:332 (1985).

    Article  ADS  Google Scholar 

  99. W. J. Carr, Jr., M. S. Walker, and J. H. Murphy, J. Appl. Phys. 46:4048 (1975).

    Article  ADS  Google Scholar 

  100. W. J. Carr, Jr., J. H. Murphy, and G. R. Wagner, Adv. Cryo. Eng. 24:415 (1978).

    Article  Google Scholar 

  101. W. J. Carr, Jr. and G. R. Wagner, Adv. Cryo. Eng. (Materials) 30:923 (1984).

    Article  Google Scholar 

  102. W. J. Carr, Jr., “AC Loss and Macroscopic Theory of Superconductors,” Gordon and Breach, New York (1983), pp. 63–67.

    Google Scholar 

  103. M. Ashkin, J. Appl. Phys. 50:7060 (1979).

    Article  ADS  Google Scholar 

  104. V. B. Zenkevitch, A. S. Romanyuk, and V. V. Zheltov, Cryogenics 20:703 (1980).

    Article  ADS  Google Scholar 

  105. C. Y. Pang, P. G. McLaren, and A. M. Campbell, Int. Cryo. Eng. Conf. 8:739 (1980).

    Google Scholar 

  106. J. V. Minervini, Adv. Cryo. Eng (Materials) 28:587 (1982).

    Article  Google Scholar 

  107. M. N. Wilson, “Superconducting Magnets,” Clarendon Press, Oxford, U.K. (1983), pp. 165–170.

    Google Scholar 

  108. K. V. Bhagwat and P. Chaddah, Physica C 166:1 (1990).

    Article  ADS  Google Scholar 

  109. J. W. Ekin, Appl Phys. Lett. 55:905 (1989).

    Article  ADS  Google Scholar 

  110. D. M. Kroeger, C. C. Koch, and J. P. Charlesworth, J. Low Temp. Phys. 19:493 (1975).

    Article  ADS  Google Scholar 

  111. R. B. Goldfarb and A. F. Clark, J. Appl. Phys. 57:3809 (1985).

    Article  ADS  Google Scholar 

  112. J. R. Cave, P. R. Critchlow, P. Lambert, and B. Champagne, IEEE Trans. Magn. 27:1379 (1991).

    Article  ADS  Google Scholar 

  113. J. R. Clem, Physica C 153–155:50 (1988).

    Article  Google Scholar 

  114. J. Z. Sun, M. J. Scharen, L. C. Bourne, and J. R. Schrieffer, Phys. Rev. B 44:5275 (1991).

    Article  ADS  Google Scholar 

  115. F. Gömöry and P. Lobotka, Solid State Commun. 66:645 (1988).

    Article  Google Scholar 

  116. D.-X. Chen, J. Nogués, and K. V. Rao, Cryogenics 29:800 (1989).

    Article  ADS  Google Scholar 

  117. A. M. Campbell, J. Phys. C: Solid State Phys. 2:1492 (1969).

    Article  ADS  Google Scholar 

  118. R. W. Rollins, H. Kupfer, and W. Gey, J. Appl. Phys. 45:5392 (1974).

    Article  ADS  Google Scholar 

  119. H. Kupfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf, Cryogenics 29:268 (1989).

    Article  ADS  Google Scholar 

  120. H. A. Ullmaier, Phys. Stat. Sol. 17:631 (1966).

    Article  ADS  Google Scholar 

  121. D. M. Kroeger, C. G. Koch, and W. A. Coghlan, J. Appl. Phys. 44:2391 (1973).

    Article  ADS  Google Scholar 

  122. A. Shaulov and D. Dorman, Appl Phys. Lett. 53:2680 (1988).

    Article  ADS  Google Scholar 

  123. E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer, and J. V. Waszczak, Appl Phys. Lett. 55:283 (1989).

    Article  ADS  Google Scholar 

  124. R. L. Peterson, J. Appl. Phys. 67:6930 (1990).

    Article  ADS  Google Scholar 

  125. C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12:14 (1964).

    Article  ADS  Google Scholar 

  126. R. W. Rollins and J. Silcox, Phys. Rev. 155:404 (1967).

    Article  ADS  Google Scholar 

  127. D.-X. Chen, R. W. Cross, and A. Sanchez, unpublished, 1991.

    Google Scholar 

  128. S. A. Campbell, J. B. Ketterson, and G. W. Crabtree, Rev. Sci. Instrum. 54:1191 (1983).

    Article  ADS  Google Scholar 

  129. B. Loegel, A. Mehdaoui, and D. Bolmont, Supercond. Sci. Technol 3:504 (1990).

    Article  ADS  Google Scholar 

  130. R. W. Cross and R. B. Goldfarb, J. Appl Phys. 67:5476 (1990).

    Article  ADS  Google Scholar 

  131. J. R. Clem, J. Appl Phys. 50, 3518 (1979).

    Article  ADS  Google Scholar 

  132. R. B. Goldfarb, A. F, Clark, A. J. Panson, and A. I. Braginski, in: “High Temperature Superconductors,” D. U. Gubser and M. Schlüter, eds., Materials Research Society, Pittsburgh, EA-11:261 (1987).

    Google Scholar 

  133. R. J. Loughran and R. B. Goldfarb, Physica C 181:138 (1991).

    Article  ADS  Google Scholar 

  134. E. Babic, Ž. Marohnic, D. Drobac, and M. Prester, Int. J. Mod. Phys. B 1:973 (1987).

    Article  ADS  Google Scholar 

  135. M. Avirovic, Ch. Neumann, P. Ziemann, J. Geerk, and H. C. Li, Solid State Commun. 67:795 (1988).

    Article  ADS  Google Scholar 

  136. L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer, and F. Holtzberg, Phys. Rev. B 39:2936 (1989).

    Article  ADS  Google Scholar 

  137. V. V. Moshchalkov, J. Y. Henry, G. Marin, J. Rossat-Mignod, and J. F. Jacquot, Physica C 175:407 (1991).

    Article  ADS  Google Scholar 

  138. E. W. Collings, A. J. Markworth, J. K. McCoy, K. R. Marken, Jr., M. D. Sumption, E. Gregory, and T. S. Kreilick, Adv. Cryo. Eng. (Materials) 36:255 (1990).

    Article  Google Scholar 

  139. S. Takacs, Czech. J. Phys. B 33:1248 (1983).

    Article  ADS  Google Scholar 

  140. K.-H. Müller, Physica C 159:717 (1989).

    Article  ADS  Google Scholar 

  141. R. B. Goldfarb and R. L. Spomer, Adv. Cryo. Eng. (Materials) 36:215 (1990).

    Article  Google Scholar 

  142. M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39:6615 (1989).

    Article  ADS  Google Scholar 

  143. T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41:6621 (1990).

    Article  ADS  Google Scholar 

  144. J. H. P. M. Emmen, V. A. M. Brabers, and W. J. M. de Jonge, Physica C 176:137 (1991).

    Article  ADS  Google Scholar 

  145. E. Maxwell and M. Strongin, Phys. Rev. Lett. 10:212 (1963).

    Article  ADS  Google Scholar 

  146. G. D. Cody and R. E. Miller, Phys. Rev. 173:481 (1968).

    Article  ADS  Google Scholar 

  147. L. M. Fisher, N. V. Il’yn, and I. F. Voloshin, Adv. Cryo. Eng. (Materials) 36:423 (1990).

    Article  Google Scholar 

  148. F. Irie and K. Yamafuji, J. Phys. Soc. Jpn. 23:255 (1967).

    Article  ADS  Google Scholar 

  149. J. R. Clem, H. R. Kerchner, and S. T. Sekula, Phys. Rev. B 14:1893 (1976).

    Article  ADS  Google Scholar 

  150. S. Takacs, F. Gömöry, and P. Lobotka, IEEE Trans. Magn. 27:1057 (1991).

    Article  ADS  Google Scholar 

  151. A. F. Khoder, Phys. Lett. 94A:378 (1983).

    ADS  Google Scholar 

  152. A. F. Khoder, M. Couach, and B. Barbara, Physica C 153-155:1477 (1988).

    Article  ADS  Google Scholar 

  153. C. Lucchini, C. Giovannella, R. Messi, B. Lecuyer, L. Fruchter, and M. Iannuzzi Phys. Stat. Sol. B 157: K123 (1990).

    Article  ADS  Google Scholar 

  154. A. Gianelli and C. Giovannella, Physica A 168:277 (1990).

    Article  ADS  Google Scholar 

  155. R. A. Hein, H. Hojaji, A. Barkatt, H. Shafii, K. A. Michael, A. N. Thorpe, M. F. Ware, and S. Alterescu, J. Supercond. 2:427 (1989).

    Article  ADS  Google Scholar 

  156. W. R. Abel, A. C. Anderson, and J. C. Wheatley, Rev. Sci. Instrum. 43:444 (1964).

    Article  ADS  Google Scholar 

  157. W. L. Pillinger, P. S. Jastram, and J. G. Daunt, Rev. Sci. Instrum. 29:159 (1958).

    Article  ADS  Google Scholar 

  158. S. C. Whitmore, S. R. Ryan, and T. M. Sanders, Rev. Sci. Instrum. 49:1579 (1978).

    Article  ADS  Google Scholar 

  159. J. R. Owers-Bradley, Wen-Sheng Zhou, and W. P. Halperin, Rev. Sci. Instrum. 52:1106 (1981).

    Article  ADS  Google Scholar 

  160. D.-X. Chen, “Ballistic and Bridge Methods of Magnetic Measurements of Materials,” China Metrology, Beijing (1990), pp. 526–572.

    Google Scholar 

  161. Ref. 107, pp. 243-249.

    Google Scholar 

  162. D. Shoenberg, Proc. Cambridge Phil. Soc. 33:559 (1937).

    Article  ADS  Google Scholar 

  163. P. H. Müller, M. Schienle, and A. Kasten, J. Magn. Magn. Mater. 28:341 (1982).

    Article  ADS  Google Scholar 

  164. T. Ishida, K. Monden, and I. Nakada, Rev. Sci. Instrum. 57:3081 (1986).

    Article  ADS  Google Scholar 

  165. B. J. Dalrymple and D. E. Prober, Rev. Sci. Instrum. 55:958 (1984).

    Article  ADS  Google Scholar 

  166. D. G. Xenikos and T. R. Lemberger, Rev. Sci. Instrum. 60:831 (1989).

    Article  ADS  Google Scholar 

  167. J. N. Fox and J. U. Trefny, Am. J. Phys. 43:622 (1975).

    Article  ADS  Google Scholar 

  168. J. G. Elliott and W. Y. Liang, Meas. Sci. Technol. 1:1351 (1990).

    Article  ADS  Google Scholar 

  169. I. Maartense, Rev. Sci. Instrum. 41:657 (1970).

    Article  ADS  Google Scholar 

  170. I. Maartense, J. Appl. Phys. 53:2466 (1982).

    Article  ADS  Google Scholar 

  171. L. Hartshorn, J. Sci. Instrum. 2:145 (1925).

    Article  ADS  Google Scholar 

  172. A. J. de Vries and J. W. M. Livius, Appl. Sci. Res. 17:31 (1967).

    Article  Google Scholar 

  173. H. A. Groenendijk, A. J. van Duyneveldt, and R. D. Willett, Physica B 101:320 (1980).

    Article  Google Scholar 

  174. J. L. Tholence, F. Holtzberg, T. R. McGuire, S. von Molnar, and R. Tournier, J. Appl. Phys. 50:7350 (1979).

    Article  ADS  Google Scholar 

  175. A. J. van Duyneveldt, J. Appl. Phys. 53:8006 (1982).

    Article  ADS  Google Scholar 

  176. A. F. Deutz, R. Hulstman, and F. J. Kranenburg, Rev. Sci. Instrum. 60:113 (1989).

    Article  ADS  Google Scholar 

  177. A. K. Rastogi, Jawaharlal Nehru University, New Delhi, and J. L. Tholence, Centre National de la Recherche Scientifique, Grenoble, personal communication, 1985.

    Google Scholar 

  178. L. J. de Jongh, W. D. van Amstel, and A. R. Miedema, Physica 58:277 (1972).

    Article  ADS  Google Scholar 

  179. K. Baberschke, Freie Universitát Berlin, personal communication, 1984.

    Google Scholar 

  180. F. R. Fickett, in: “Materials at Low Temperatures,” R. P. Reed and A. F. Clark, eds., American Society for Metals, Metals Park, Ohio (1983), pp. 164–165.

    Google Scholar 

  181. The flux from an ellipsoidal sample through a single-turn pick-up coil is calculated in: M. Denhoff, S. Gygax, and J. R. Long, Cryogenics 21:400 (1981).

    Google Scholar 

  182. R. B. Goldfarb and J. V. Minervini, Rev. Sci. Instrum. 55:761 (1984). On page 763, second column, line 3 and Fig. 3, “L*” should be “2L*.”.

    Article  ADS  Google Scholar 

  183. L. Cohen, Bull. Bureau Standards 3:295 (1907).

    Article  Google Scholar 

  184. Ref. 76, pp. 205-207.

    Google Scholar 

  185. J. E. Zimmerman, Rev. Sci. Instrum. 32:402 (1961).

    Article  ADS  Google Scholar 

  186. R. A. Matula, J. Phys. Chem. Ref. Data 8:1147 (1979).

    Article  ADS  Google Scholar 

  187. R. M. Bozorth, “Ferromagnetism,” Van Nostrand, Princeton, New Jersey (1951), pp. 775–776.

    Google Scholar 

  188. R. G. Chambers and J. G. Park, Brit. J. Appl. Phys. 12:507 (1961).

    Article  ADS  Google Scholar 

  189. M. D. Rosenthal and B. W. Maxfield, Rev. Sci. Instrum. 46:398 (1975).

    Article  ADS  Google Scholar 

  190. A. M. Ricca and S. Zannella, IEEE Trans. Magn. 23:1422 (1987).

    Article  ADS  Google Scholar 

  191. H. Zijlstra, “Experimental Methods in Magnetism,” Vol. 2, North-Holland, Amsterdam (1967), pp. 72–79.

    Google Scholar 

  192. S. Foner, Rev. Sci. Instrum. 46:1425 (1975).

    Article  ADS  Google Scholar 

  193. J. S. Philo and W. M. Fairbank, Rev. Sci. Instrum. 48:1529 (1977).

    Article  ADS  Google Scholar 

  194. P. J. Flanders, J. Appl. Phys. 63:3940 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldfarb, R.B., Lelental, M., Thompson, C.A. (1991). Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors. In: Hein, R.A., Francavilla, T.L., Liebenberg, D.H. (eds) Magnetic Susceptibility of Superconductors and Other Spin Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2379-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2379-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2381-3

  • Online ISBN: 978-1-4899-2379-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics