Skip to main content

Wigner Function Modeling of the Resonant Tunneling Diode

  • Chapter
Quantum Transport in Semiconductors

Part of the book series: Physics of Solids and Liquids ((PSLI))

  • 587 Accesses

Abstract

In recent years a number of techniques have been developed which have allowed semiconductor devices to be fabricated with ever-smaller feature sizes. Using MBE and MOCVD epitaxial growth techniques,(1) the composition of semiconductor wafers can be controlled on atomic length scales. This leads to potential variations along one (growth) direction that vary on scales as small as one atomic layer. Using electron-beam and x-ray lithographies, it has also become possible to pattern gates with characteristic features on the scale of a few tens of nanometers. These small scales are comparable to the wavelengths of the electrons and holes within the devices. In this regime, device modeling cannot be based on a classical picture augmented by quantum corrections and parameters; it must incorporate quantum mechanics at a fundamental level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, the Les Houches proceedings in The Physics and Fabrication of Microstructures and Microdevices (M. J. Kelly and C. Weisbuch, eds.), Springer, Berlin (1986) Proceedings of the Fourth International Conference on Molecular Beam Epitaxy (C. T. Foxon and J. J. Harris, eds.), in J. Cryst. Growth 81

    Google Scholar 

  2. M. J. Ludowise, J. Appl. Phys. 58, R31 (1985).

    Article  ADS  Google Scholar 

  3. L. Esaki and R Tsu, Ibm J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  4. R. Tsu and L. EsAki, AppL Phys. Lett. 22, 562 (1973)

    Article  ADS  Google Scholar 

  5. L. L. Chang, L. EsAki, and R. Tsu, AppL Phys. Lett. 24, 593 (1974).

    Google Scholar 

  6. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, AppL Phys. Lett. 43, 588 (1983)

    Article  ADS  Google Scholar 

  7. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, and W. D. Goodhue, AppL Phys. Lett. 45, 1319 (1984).

    Article  ADS  Google Scholar 

  8. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Leu. 58 1256 (1987)

    Article  ADS  Google Scholar 

  9. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Lett. 59, 1623 (1987).

    Article  ADS  Google Scholar 

  10. G. Bernstein and D. K. Ferry, Ieee Trans. Elec. Dev. ED-35, 887 (1988)

    Google Scholar 

  11. G. Bernstein and D. K. Ferry, Z Phys. B 67, 449 (1987).

    Article  Google Scholar 

  12. R. A. Puechner, Jun MA, R Mezenner, W.-P. Liu, A. M. Kriman, G. N. Maracas, G. Bernstein, D. K. Ferry, P. Chu, H. H. Wieder, and P. Newman, Surf. Sci. 228, 520–523 (1990).

    Article  ADS  Google Scholar 

  13. See Ibm J. Res. Develop. (Mar. 1988).

    Google Scholar 

  14. B. Ricoh and M. Azbel, Phys. Rev. B 29, 1970 (1984).

    Article  ADS  Google Scholar 

  15. R. Landauer, Ibm J. Res. Dev. 1, 223 (1957).

    Article  MathSciNet  Google Scholar 

  16. W. W. Lui and M. FuxuMA, J. AppL Phys. 60, 1555 (1986).

    Google Scholar 

  17. E. Merzbacher, Quantum Mechanics, Wiley, New York (1970).

    Google Scholar 

  18. J. Heading, An Introduction to Phase Integral Methods, Wiley, New York (1962).

    Google Scholar 

  19. E. L. Hill, Phys. Rev. 38, 1258 (1931).

    Google Scholar 

  20. R PÉRez-Alvarez and H. Rodriguez-Coppola, Phys. Stat. Sol. (b) 145, 493 (1988), has extensive references.

    Google Scholar 

  21. R Landauer, Z Phys. B 21, 247 (1975).

    Google Scholar 

  22. M. Brnker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  ADS  Google Scholar 

  23. A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, Phys. Rev. B 36, 5953 (1987).

    Article  ADS  Google Scholar 

  24. U. Ravaioli, M. A. Osman, W. PÖTZ, N. C. Kluksdahl, and D. K. Ferry, Physica B + C 134B, 36 (1985).

    Article  ADS  Google Scholar 

  25. S. M. Goodnick and D. K. Ferry, in Physics and Chemistry 111-V Compound Semiconductor Interfaces ( C. W. Wilunson, ed.), Plenum, New York (1985).

    Google Scholar 

  26. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  ADS  Google Scholar 

  27. J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Google Scholar 

  28. I. B. Levinson, Zh. Eksp. Teor. Fis. 57, 660 (1969)

    Google Scholar 

  29. I. B. Levinson, Soy. Phys.-Jetp 30, 362 (1970)

    Google Scholar 

  30. P. Carruthers and F. Zachariason, Rev. Mod. Phys. 55, 245 (1983).

    Article  ADS  Google Scholar 

  31. G. J. Iafrate, H. L. Grubin, and D. K. Ferry, Phys. Lett. 87A, 145 (1982).

    Article  MathSciNet  Google Scholar 

  32. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  33. H. Haken, H. Risken, and W. Weidlich, Z Phys. 206, 355 (1967).

    Article  Google Scholar 

  34. M. Lax and W. H. Louisell, Ieee J. Quantum Electron. QE-3, 47 (1967).

    Google Scholar 

  35. M. J. Bastiaans, Opt. Comm. 25, 26 (1978).

    Article  ADS  Google Scholar 

  36. K. H. Brenner and J. Ojeda-Castaneda, Opt. Acta 31, 213 (1984).

    Article  ADS  Google Scholar 

  37. M. J. Bastiaans, Appl. Opt. 19, 192 (1980).

    Article  ADS  Google Scholar 

  38. M. Conner and Y. LI, AppL Opt 24, 3825 (1985).

    Article  ADS  Google Scholar 

  39. B. V. K. Vijaya Kumar and C. W. Carroll, Opt. Eng. 23, 732 (1984).

    Google Scholar 

  40. J. R. Barker, J. Phys. C 6, 2663 (1973).

    Google Scholar 

  41. J. R. Barker and S. Murray, Phys. Lett. 93A, 271 (1983).

    Article  MathSciNet  Google Scholar 

  42. N. C. Kluksdahl, W. PÖTZ, U. Ravaiolo, and D. K. Ferry, Superlatt. Microstruct. 3, 41 (1987).

    Article  Google Scholar 

  43. W. R. Frensley, J. Vac. Sci. Tech. B 3, 1261 (1985).

    Google Scholar 

  44. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    MATH  Google Scholar 

  45. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York (1962).

    MATH  Google Scholar 

  46. W. HÄNsch and G. D. Mahan, Phys. Rev. B 28, 1902 (1983)

    Article  ADS  Google Scholar 

  47. G. Mahan, J. Phys. F 13, L257. (1983)

    Article  ADS  Google Scholar 

  48. G. Mahan and W. HÂNsch, J. Phys. F 13, L47 (1983).

    Article  ADS  Google Scholar 

  49. A. P. Jauho and J. W. Wilkins, Phys. Rev. B 29, 1919 (1984).

    Article  ADS  Google Scholar 

  50. J. R. Barker, in Physics of Nonlinear Transport in Semiconductors ( D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1979).

    Google Scholar 

  51. N. C. Kluksdahl, A. M. Kriman, C. Ringhofer, and D. K. Ferry, Solid-State Electron. 31, 743 (1988).

    Article  ADS  Google Scholar 

  52. A. M. Kriman, J. Zhou, N. C. Kluksdahl, H. H. Choi, and D. K. Ferry, Solid-State Electron. 32, 1603 (1989).

    Article  ADS  Google Scholar 

  53. A. M. Kaiman, A. Szafer, A. D. Stone, and D. K. Ferry, submitted for publication.

    Google Scholar 

  54. A. M. Kriman and D. K. Ferry, Superlatt. Microstruct. 3, 503 (1987).

    Article  ADS  Google Scholar 

  55. E. Wigner, Phys. Rev. 98, 145 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. W. R. Frensley, Phys. Rev. B 36, 1570 (1987).

    Google Scholar 

  57. R. Courant, K. Friedrichs, and H. LEwY, Math. Ann. 100, 32 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. I. Shokin, The Method of Differential Approximation, Springer-Verlag, Berlin (1983).

    Book  MATH  Google Scholar 

  59. J. R. Barker, private communication.

    Google Scholar 

  60. M. BiJrrIker, Phys. Rev. B 33, 3020 (1986).

    Google Scholar 

  61. R. Landauer, Philos. Mag. 21, 863 (1970).

    Article  ADS  Google Scholar 

  62. R. Landauer and M. Bottiker, Phys. Rev. Lett. 54, 2049 (1985).

    Article  ADS  Google Scholar 

  63. M. BïmIker, Phys. Rev. B 32, 1846 (1985).

    Google Scholar 

  64. M. Bottiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Google Scholar 

  65. M. BirTTtKer, Phys Rev. B 35, 4123 (1987).

    Article  ADS  Google Scholar 

  66. B. Engquist and A. Majda, Math. Comp. 31, 629 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. C. Ringhofer, D. Ferry, and N. Kluksdahl, Transp. Thry. Stat. Phys. 18, 331 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. L. Nirenberg, Lectures on Linear Partial Differential Equations, Cbms Regular Conference Series in Mathematics, vol. 17, American Mathematical Society, Providence, RI (1973).

    Google Scholar 

  69. N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Superlatt. Microstruct. 4, 127 (1988).

    Article  ADS  Google Scholar 

  70. N. C. Kluksdahl, C. Ringhofer and D. K. Ferry, unpublished.

    Google Scholar 

  71. J. S. Blakemore, Semiconductor Statistics, Pergamon Press, New York (1962).

    MATH  Google Scholar 

  72. See, for example, K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin (1985).

    Google Scholar 

  73. W. R. Frensley, Solid-State Electron. 31, 739 (1988).

    Google Scholar 

  74. N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Ieee Elec. Dev. Lett. Edl-9, 457 (1988).

    Google Scholar 

  75. W. R. Frensley, Phys. Rev. Lett. 57, 2853 (1986).

    Article  ADS  Google Scholar 

  76. A. Many, Y. Goldstein and N. B. Grover, Semiconductor Surfaces, Wiley, New York (1965).

    Google Scholar 

  77. D. Delagebeaudeuf and N. T. Linh, Ieee Trans. Electron Devices ED-29, 955 (1982).

    Google Scholar 

  78. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. B 35, 9387 (1987).

    Article  ADS  Google Scholar 

  79. T. C. L. G. Sollner, Phys. Rev. Lett. 59, 1622 (1987).

    Article  ADS  Google Scholar 

  80. L. Eaves, E. S. Alves, T. J. Foster, M. Henini, O. H. Hughes, M. L. Leadbeater, F. W. Sheard, G. A. Toombs, K. Chan, A. Celeste, J. C. Portal, G. Hill, and M. A. Pate, Proceedings of the 1988 Mounterndorf Conference on Physics and Technology of Submicron Structures,to be published.

    Google Scholar 

  81. F. W. Sheard and G. A. Toombs, AppL Phys. Lett. 52, 1228 (1988).

    Article  ADS  Google Scholar 

  82. L. Y. L. Shen And J. M. Rowell, Phys. Rev. 165, 566 (1968).

    Article  ADS  Google Scholar 

  83. C. B. Duke, Tunneling in Solids, Solid State Physics Suppl. 10, Academic Press, New York (1969).

    Google Scholar 

  84. J. A. Appelbaum, Phys. Rev. 154, 633 (1967).

    Article  ADS  Google Scholar 

  85. D. E. Lacklison, B. Duggan, J. J. Harris, C. T. B. FOxON, D. Hilgon, C. Roberts, and C. M. Hellon, AppL Phys. Lett. 52, 305 (1988).

    Article  ADS  Google Scholar 

  86. N. C. Kluksdahl and D. K. Ferry, unpublished.

    Google Scholar 

  87. W. Frensley, in Proc. Ncce Workshop on Semiconductor Device Modeling (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kriman, A.M., Kluksdahl, N.C., Ferry, D.K., Ringhofer, C. (1992). Wigner Function Modeling of the Resonant Tunneling Diode. In: Ferry, D.K., Jacoboni, C. (eds) Quantum Transport in Semiconductors. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2359-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2359-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43853-0

  • Online ISBN: 978-1-4899-2359-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics