Skip to main content

Biotechnological and Applied Aspects of Methane and Methanol Utilizers

  • Chapter
Methane and Methanol Utilizers

Part of the book series: Biotechnology Handbooks ((BTHA,volume 5))

Abstract

The rapid developments in our understanding of many aspects of methylotrophy have, in no small part, resulted from the perceived industrial applications of these organisms, particularly the aerobic methanol and methane utilizers. The ICI Pruteen process stands as a landmark of technical achievement in industrial fermentation. Yet few of these applications have reached commercial reality, at least in Western economies, or withstood the competition from other quarters. This is not to say that C1 biotechnology has no future. Indeed, the relative maturity of C1 research and technology might in itself count in favor of adopting new C1-based processes. However, it is probably true to say that C1 biotechnology is at a crossroads. The successful processes of the future may well be very different from those envisaged 15–20 years ago but will no doubt benefit from the knowledge base already established. It is therefore timely to review C1 biotechnology with the benefit of hindsight and perhaps establish the ground rules for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackrell, B. A. C., and Jones, C. W., 1971, The respiratory system of Azotobacter vinelandii 2. Oxygen effects, Eur. J. Biochem. 20:29–35.

    PubMed  CAS  Google Scholar 

  • Anthony, C., 1982, The Biochemistry of Methylotrophs, Academic Press, London, pp. 251–260.

    Google Scholar 

  • Asenjo, J. A., and Suk, S. S., 1986, Microbial conversion of methane into poly-beta-hydroxybutyrate (PHB): growth and intracellular accumulation in a type II methanotroph, J. Ferment. Technol. 64:271–278.

    CAS  Google Scholar 

  • Bamforth, C. W., and Quayle, J. R., 1978, The dye linked alcohol dehydrogenase of Rhodopseudomonas acidophila. Comparison with dye-linked methanol dehydrogenase, Biochem. J. 169:677–686.

    PubMed  CAS  Google Scholar 

  • Beardsmore, A. J., Aperghis, P. N., and Quayle, J. R., 1982a, Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during growth of Methylophilus methylotrophus on methanol, J. Gen. Microbiol. 128:1423–1439.

    CAS  Google Scholar 

  • Beardsmore, A. J., Collins, S. H., Powell, K. A., and Senior, P. J., 1982b, EPA 82,302,608.3.

    Google Scholar 

  • Behrendt, U., Bang, W. G., and Wagner, F., 1984, The production of L-serine with a methylotrophic microorganism using the l-serine pathway and coupling with an l-tryptophan-producing process, Biotechnol. Bioeng. 26:308–314.

    PubMed  CAS  Google Scholar 

  • de Boer, L., Vrijbloed, W., Van Rijssel, M., and Dijkhuizen, L., 1987, Regulation of phenylalanine metabolism in the facultative methylotroph Nocardia sp. 239 growing on a methanol culture medium, Eur. Congr. Biotechnol. 3:466.

    Google Scholar 

  • Byrom, D., 1984, Host-vector systems for Methylophilus methylotrophus, in: Microbial Growth on C 1 Compounds. Proceedings of the 4th International Symposium (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 221–223.

    Google Scholar 

  • Byrom, D., 1987, Polymer synthesis by micro-organisms: technology and economics, Trends Biotechnol. 5:246–250.

    CAS  Google Scholar 

  • Cardini, G., and Jurtshuk, P., 1970, Cytochrome P-450 involvement in the oxidation of n-octane by cell free extracts of Corynebacterium sp. strain 7E1C, J. Biol. Chem. 245:2789–2796.

    PubMed  CAS  Google Scholar 

  • Chibata, I., Tosa, T., and Sato, T., 1985, Aspartic acid, in: Comprehensive Biotechnology, Vol. 3 (M. Moo-Young, ed.), Pergamon Press, Oxford, pp. 633–640.

    Google Scholar 

  • Colby, J., Stirling, D. I., and Dalton, H., 1977, The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds, Biochem, J. 165:395–402.

    CAS  Google Scholar 

  • Couderc, R., and Baratti, J., 1980, Immobilized yeast cells with methanol oxidase activity: preparation and enzymatic properties, Biotechnol. Bioeng. 22:1155–1173.

    CAS  Google Scholar 

  • Cregg, J. M., Tschopp, J. F., Stillman, C., Siegel, R., Akong, M., Craig, W. S., Buckholz, R. G., Madden, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregossa, R., Velicelebi, G., and Thill, G. P., 1987, High level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris, Bio/technology 5:479–485.

    CAS  Google Scholar 

  • Cross, A. R., and Anthony, C., 1980, The electron-transport chains of the obligate methylotroph Methylophilus methylotrophus, Biochem. J. 192:429–439.

    CAS  Google Scholar 

  • Dalton, H., 1980, Oxidation of hydrocarbons by methane monooxygenase from a variety of microbes, Adv. App. Microbiol. 26:71–87.

    CAS  Google Scholar 

  • Dalton, H., Golding, B. J., Waters, B. W., Higgins, R., and Taylor, J. A., 1981, Oxidations of cyclopropane, methyl cyclopropane and arenes with the monooxygenase system from Methylococcus capsulatus, J. Chem. Soc. Chem. Commun. 189:482–483.

    Google Scholar 

  • de Vries, G. E., Kues, U., and Stahl, U., 1990, Physiology and genetics of methylotrophic bacteria, FEMS Microbiol. Rev. 75:57–102.

    Google Scholar 

  • Dijkhuizen, L., Hansen, T. A., and Harder, W., 1985, Methanol: a potential feedstock for biotechnological processes, Trends Biotechnol. 3:262–267.

    CAS  Google Scholar 

  • Drozd, J. W., Linton, J. D., Downs, J., and Stephenson, R. J., 1978, An in situ assessment of the specific lysis rate in continuous cultures of Methylococcus sp. (NCIB 11083) grown on methane, FEMS Microbiol. Lett. 4:311–314.

    CAS  Google Scholar 

  • Eguchi, S. Y., Nishio, N., and Nagai, S., 1983, NADPH production from NADP+ by a formate-utilizing methanogenic bacterium, Agric. Biol. Chem. 47:2941–2943.

    CAS  Google Scholar 

  • Enei, H., and Hirose, Y., 1985, Phenylalanine, in: Comprehensive Biotechnology, Vol. 3 (M. Moo-Young, ed.), Pergamon Press, Oxford, pp. 601–605.

    Google Scholar 

  • Faust, U., 1979, Process results from SCP-pilot plant based on methanol in: Microbiology Applied to Biotechnology, Proceedings of 12th International Congress of Microbiology, Verlag Chemie, Weinheim, pp. 125-133.

    Google Scholar 

  • Foster, J. W., 1962, Hydrocarbons as substrates for microorganisms, Ant. van Leeuw. J. Microbiol. Serol. 28:241–274.

    Google Scholar 

  • Ghisalba, O., and Heinzer, F., 1982, Methanol from methane-a hypothetical microbial conversion compared to the chemical process, Experientia 38:218–223.

    CAS  Google Scholar 

  • Ghisalba, O., and Kuenzi, M., 1983a, Biodegradation of monomethyl sulfate by specialized methylotrophs, Experientia 39:1257–1263.

    PubMed  CAS  Google Scholar 

  • Ghisalba, O., and Kuenzi, M., 1983b, Biodegradation and utilization of quaternary alkylammonium compounds by specialized methylotrophs, Experientia 39:1264–1271.

    PubMed  CAS  Google Scholar 

  • Goldberg, I., 1985, Single Cell Protein, Springer Verlag, Berlin.

    Google Scholar 

  • Green, J., and Dalton, H., 1986, Steady-state kinetic analysis of soluble methane monooxygenase from Methylococcus capsulatus (Bath) Biochem. J. 236:155–162.

    PubMed  CAS  Google Scholar 

  • Grinna, L. S., and Tschopp, J. F., 1989, Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris, Yeast 5:107–115.

    CAS  Google Scholar 

  • Hacking, A. J., 1986, Economic Aspects of Biotechnology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hamilton, B. K., Hsiao, H-Y., Swann, W. E., Anderson, M., and Delente, J., 1985, Manufacture of l-amino acids with bioreactors, Trends Biotechnol. 3:64–68.

    CAS  Google Scholar 

  • Hardy, G. A., and Dawes, E. A., 1985, Effect of oxygen concentration on the growth and respiratory efficiency of Acinetobacter calcoaceticus, J. Gen. Microbiol. 131:855–864.

    CAS  Google Scholar 

  • Heijnen, J. J., and Roels, J. A., 1981, A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes, Biotechnol. Bioeng. 23:739–763.

    CAS  Google Scholar 

  • Hennam, J. F., Cunningham, A. E., Sharp, G. S., and Atherton, K. T., 1982, Expression of eukaryotic coding sequences in Methylophilus methylotrophus, Nature (Lond.) 297:80–82.

    CAS  Google Scholar 

  • Higgins, I. J., Aston, W. J., Best, D. J., Turner, A. P. F., Jezequel, S. G., and Hill, H. A. O., 1984, Applied aspects of methylotrophy: bioelectrochemical applications, purification of methanol dehydrogenase and mechanism of methane mono-oxygenase, in: Microbial Grown on C 1 Compounds, Proceedings of 4th International Symposium (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 297–305.

    Google Scholar 

  • Hirose, Y., Enei, H., and Shibori, H., 1985, l-Glutamic acid fermentation, in: Comprehensive Biotechnology, Vol. 3 (M. Moo-Young, ed.), Pergamon Press, Oxford, pp. 593–600.

    Google Scholar 

  • Hou, C. T., 1984, Other applied aspects of methylotrophs, in: Methylotrophs: Microbiology, Biochemistry and Genetics (C. T. Hou, ed.), CRC Press, Boca Raton, FL, pp. 145–166.

    Google Scholar 

  • Hou, C. T., Patel, R. N., Laskin, A. L., Barnabe, N., and Marczak, I., 1979, Microbial oxidation of gaseous hydrocarbons: production of methyl ketones from their corresponding secondary alcohols by methane and methanol-grown microbes, Appl. Env. Microbiol. 38:135–142.

    CAS  Google Scholar 

  • Hsiao, H. Y., Wei, T., and Campbell, K., 1986, Enzymatic production of l-serine, Biotechnol. Bioeng. 28:857–867.

    PubMed  CAS  Google Scholar 

  • Huang, T. L., Fang, B. S., and Fang, H. Y., 1985, Oxidation of secondary alcohols to methylketones by immobilized yeast cells, J. Gen. Appl. Microbiol. (Tokyo) 31:125–134.

    CAS  Google Scholar 

  • Izumi, Y., Asana, Y., Tani, Y., and Ogata, K., 1977, Mutants of an obligate methylotroph, formation of valine and leucine by analog-resistant Methylomonas aminofaciens, J. Ferment. Technol. 55:452–458.

    CAS  Google Scholar 

  • Izumi, Y., Takizawa, M., Tani, Y., and Yamada, H., 1982, l-Serine production by resting cells of a methanol-utilizing bacterium, J. Ferment. Technol. 60:269–276.

    CAS  Google Scholar 

  • Izumi, Y., Mishra, S. K., Ghosh, B. S., Tani, Y., and Yamada, H., 1983, NADH production from NAD+ using a formate dehydrogenase system with cells of a methanol-utilizing bacterium, J. Ferment. Technol. 61:135–142.

    CAS  Google Scholar 

  • Jezequel, S. G., and Higgins, I. J., 1983, Mechanistic aspects of biotransformations by the monooxygenase system of Methylosinus trichosporium OB3b, J. Chem. Tech. Biotechnol. 33B:139–144.

    CAS  Google Scholar 

  • Karube, I., Okada, T., and Suzuki, S., 1982, A methane gas sensor based on methane-oxidising bacteria, Anal. Chim. Acta 135:61–67.

    CAS  Google Scholar 

  • Keune, H., Sahm, H., and Wagner, F., 1976, Production of L-serine by the methanolutilizing bacterium Pseudomonas 3ab, Eur. J. Appl. Microbiol. Biotechnol. 2:175–184.

    CAS  Google Scholar 

  • Kierstan, M., 1982, The enzymatic conversion of ethanol to acetaldehyde as a model recovery system, Biotechnol. Bioeng. 24:2275–2277.

    PubMed  CAS  Google Scholar 

  • Kieslich, K., and Sebek, O. K., 1979, Microbial transformations of steroids, in: Annual Reports on Fermentation Processes, Vol. 3 (D. Perlman, ed.), Academic Press, New York, pp. 275–304.

    Google Scholar 

  • Kubota, K., Kageyama, K., Maeyashiki, I., Yamada, K., and Okumura, S., 1972, Fermentative production of l-serine, production of l-serine from glycine by Corynebacterium glycinophilum nov. sp., J. Gen. Appl. Microbiol. 18:365–375.

    CAS  Google Scholar 

  • Kuraishi, M., Tareo, H., Ohkouchi, N., Matsuda, N., and Nagai, I., 1979, SCP process development with methanol as substrate, in: Microbiology Applied to Biotechnology, Proceedings of 12th International Congress of Microbiology, Verlag Chemie, Weinheim, pp. 111–124.

    Google Scholar 

  • Kvenvolden, K. A., 1988, Methane hydrate. A major reservoir of carbon in the shallow geosphere? Chem. Geol. 71:41–51.

    CAS  Google Scholar 

  • Leak, D. J., and Dalton, H., 1986, Growth yields of methanotrophs. 1. Effect of copper on the energetics of methane oxidation, Appl. Microbiol. Biotechnol. 23:470–476.

    CAS  Google Scholar 

  • Lim, W. J., and Tani, Y., 1988, Production of l-methionine-enriched cells of a mutant derived from a methylotrophic yeast, Candida boidinii, J. Ferment. Technol. 66(6):643–647.

    CAS  Google Scholar 

  • Linton, J. D., and Niekus, H. G. D., 1987, The potential of one-carbon compounds as fermentation feedstocks, in: Microbial Growth on C 1 Compounds, Proceedings of 5th International Symposium (H. W. van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 263–271.

    Google Scholar 

  • Linton, J. D., Watts, P. D., Austin, R. M., Haugh, D. E., and Niekus, H. G. D., 1986, The energetics and kinetics of extracellular polysaccharide production from micro-organisms possessing different pathways of C1 assimilation, J. Gen. Microbiol. 132:779–788.

    CAS  Google Scholar 

  • Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gialmer, P. J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium, Appl. Environ. Microbiol. 54:951–956.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G., 1983, Formation of acetate using homo-acetate-fermenting anaerobic bacteria, in: Organic Chemicals from Biomass (D. L. Wise, ed.), Benjamin/Cummings, Menlo Park, CA, pp. 219–248.

    Google Scholar 

  • Longin, R., Cooney, C. L., and Demain, A. L., 1982, Studies in the overproduction of indole-containing metabolites by a methanol-utilizing yeast, Hansenula polymorpha, Appl. Biochem. Biotechnol. 7:281–293.

    CAS  Google Scholar 

  • de Maeyer, E., Skup, D., Prasad, K. S. N., de Maeyer-Guignard, J., Williams, B., Meacock, P., Sharp, G., Pioli, D., Hennam, J., Schuch, W., and Atherton, K., 1982, Expression of a chemically synthesized human alpha-1-interferon gene, Proc. Natl. Acad. Sci. USA 79:4256–4259.

    PubMed  Google Scholar 

  • Mayer, K. P., Grbic-Galic, D., Semprini, L., and McCarty, P. L., 1988, Degradation of trichloroethylene by methanotrophic bacteria in a laboratory column of saturated aquifer material, Water Sci. Technol. 20:175–178.

    CAS  Google Scholar 

  • Mazumder, T. K., Nishio, N., Hayaishi, M., and Nagai, S., 1986, Production of corrinoids including vitamin B12 by Methanosarcina barkeri growing on methanol, Biotechnol. Lett. 8:843–848.

    CAS  Google Scholar 

  • McNairney, J., 1984, Modification of a novel protein product, J. Chem. Tech. Biotechnol. 34B:206–214.

    CAS  Google Scholar 

  • Mizumo, S., and Imada, Y., 1986, Conversion of methanol to formic acid through the coupling of the enzyme reactions of alcohol oxidase, catalase and the formaldehyde dismutase, Biotechnol. Lett. 8:79–84.

    Google Scholar 

  • Mogren, H., 1979, SCP from methanol-the Norprotein process, Process Biochem. 14(3):2–7.

    CAS  Google Scholar 

  • Moore, A. T., Vira, A., and Fogel, S., 1989, Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in a aquifer simulator, Environ. Sci. Technol. 23:403–406.

    CAS  Google Scholar 

  • Morinaga, Y., Yamanaka, S., and Takimani, K., 1981a, l-Serine production by methanol-utilizing bacterium Pseudomonas MS31, Agric. Biol. Chem. 45:1419–1424.

    CAS  Google Scholar 

  • Morinaga, Y., Yamanaka, S., and Takimani, K., 1981b, l-Serine production by temperature-sensitive mutants of methanol-utilizing bacterium Pseudomonas MS31, Agric. Biol. Chem. 45:1425–1430.

    CAS  Google Scholar 

  • Morinaga, Y., Tani, Y., and Yamada, H., 1982, l-Methionine production by ethionine-resistant mutants of facultative methylotroph, Pseudomonas FM18, Agric. Biol. Chem. 46:473–480.

    CAS  Google Scholar 

  • Morinaga, Y., Yamanaka, S., and Takimani, K., 1983, l-Serine production improved by analogue resistant mutants of a methanol-utilizing bacterium, Agric. Biol. Chem. 47:2113–2114.

    CAS  Google Scholar 

  • Morinaga, Y., Tani, Y., and Yamada, H., 1984, Homocysteine transmethylation in methanol-utilizing bacteria and its application to l-methionine production, Agric. Biol. Chem. 48:143–148.

    CAS  Google Scholar 

  • Nakayama, K., 1985, Lysine, in: Comprehensive Biotechnology, Vol. 3 (M. Moo-Young, ed.), Pergamon Press, Oxford, pp. 607–620.

    Google Scholar 

  • Nakayama, K., Kobata, M., Tanaka, Y., Nomura, T., and Katsumata, R., 1975, Biological preparation of l-glutamic acid, Ger. Offen. 2:458,206.

    Google Scholar 

  • Natori, Y., and Nagasaki, T., 1981, Enhancement of coenzyme Q10 accumulation by mutation and effects of medium components on the formation of coenzyme Q homologs by Pseudomonas N842 and mutants, Agric. Biol. Chem. 45:2175–2182.

    CAS  Google Scholar 

  • Nishio, N., Tanaka, M., Matsuno, R., and Kamikubo, T., 1977, Production of vitamin B12 by methanol-utilizing bacteria, Pseudomonas AM1 and Microcyclus eburneus, J. Ferment. Technol. 55:200–203.

    CAS  Google Scholar 

  • Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B., 1989, Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB36 expressing soluble methane monooxygenase, Appl. Environ. Microbiol. 55:2819–2826.

    PubMed  CAS  Google Scholar 

  • Oki, Y., Kitai, A., Kouno, K., and Ozaki, A, 1973, Production of l-glutamic acid by methanol-utilizing bacteria, J. Gen. Appl. Microbiol. (Tokyo) 19:79–83.

    CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., Derelanko, P., and Felix, A., 1979, Microbial production of methylketones: purification and properties of a secondary alcohol dehydrogenase from yeast, Eur. J. Biochem. 101:401–406.

    PubMed  CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., Felix, A, and Derelanko, P., 1980, Microbial conversion of gaseous hydrocarbons: production of methyl ketones from corresponding n-alkanes by methane-utilizing bacteria, Appl. Environ. Microbiol. 39:727–733.

    PubMed  CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., and Felix, A, 1982, Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26, Appl. Environ. Microbiol. 44:1130–1137.

    PubMed  CAS  Google Scholar 

  • Powell, K. A., and Rodgers, B. L. F., 1984, Single cell protein, in: Methylotrophs: Microbiology, Biochemistry and Genetics (C. T. Hou, ed.), CRC Press, Boca Raton, FL, pp. 119–144.

    Google Scholar 

  • Roels, J. A., 1980, Application of macroscopic principles to microbial metabolism, Biotechnol. Bioeng. 22:2457–2514.

    CAS  Google Scholar 

  • Sahm, H., and Wagner, F., 1973, Microbial assimilation of methanol. The ethanol and methanol-oxidising enzymes of the yeast Candida boidinii, Eur. J. Biochem. 36:250–256.

    CAS  Google Scholar 

  • Sakai, Y., and Tani, Y., 1986, Formaldehyde production by cells of a mutant of Candida boidinii S2 grown in methanol-limited chemostat culture, Agric. Biol. Chem. 50:2615–2620.

    CAS  Google Scholar 

  • Senior, P. J., and Windass, J., 1980, The ICI single cell protein process, Biotech. Lett. 2:205–210.

    CAS  Google Scholar 

  • Shay, L. K., Hunt, H. R., and Wegner, G. H., 1987, High-productivity fermentation process for cultivating industrial microorganisms, J. Indust. Microbiol. 2:79–85.

    CAS  Google Scholar 

  • Shimizu, S., Ishida, M., Kata, N., Tani, Y., and Ogata, K., 1977a, Derepression of FAD pyrophosphorylase and flavin changes during growth of Kloechera sp. no. 2201 on methanol, Agric. Biol. Chem. 41:2215–2220.

    CAS  Google Scholar 

  • Shimizu, S., Ishida, M., Tani, Y., and Ogata, K., 1977b, Production of flavin-adenine dinucleotide by methanol-utilizing yeasts, J. Ferment. Technol. 55:630–632.

    CAS  Google Scholar 

  • Siiman, N. J., Carver, M. A., and Jones, C. W., 1989, Physiology of amidase production by Methylophilus methylotrophus: isolation of hyperactive strains using continuous culture, J. Gen. Microbiol. 135:3153–3164.

    Google Scholar 

  • Sirirote, P., Yamane, T., and Shimizu, S., 1986, Production of l-serine from methanol and glycine by resting cells of a methylotroph under automatically controlled conditions, J. Ferment. Technol. 64:389–396.

    CAS  Google Scholar 

  • Solomons, G. L., 1983, Single cell protein, CRC Crit. Rev. Biotechnol. 1:21–58.

    CAS  Google Scholar 

  • Solomons, G. L., 1985, Production of biomass by filamentous fungi, in: Comprehensive Biotechnology, Vol. 3 (M. Moo-Young, ed.), Pergamon Press, Oxford, pp. 483–505.

    Google Scholar 

  • Suzuki, M., Berglund, A., Unden, A., and Heden, C. G., 1977, Aromatic amino acid production by analogue-resistant mutants of Methylomonas methanolophila 6R, J. Ferment. Technol. 56:466–475.

    Google Scholar 

  • Suzuki, T., Yamane, T., and Shimizu, S., 1986, Mass production of poly-beta-hydroxybutyric acid by fully automatic fed batch culture of methylotroph, Appl. Microbiol. Biotechnol. 23:322–329.

    CAS  Google Scholar 

  • Tanaka, Y., Araki, K., and Nakayama, K., 1980, Strain improvement of Nocardia butanica for microbial conversion of glycine into l-serine, J. Ferment. Technol. 58:163–170.

    CAS  Google Scholar 

  • Tani, Y., Kanagawa, T., Hanpongkittikun, A., Ogata, K., and Yamada, H., 1978, Production of l-serine by a methanol-utilizing bacterium Arthrobacter globiformis SK200, Agric. Biol. Chem. 42:2275–2279.

    CAS  Google Scholar 

  • Tani, Y., Mitani, Y., and Yamada, H., 1982, Utilization of C1 compounds: phosphorylation of adenylate by oxidative phosphorylation in Candida boidinii (Kloeckera sp.) no. 2201, Agric. Biol. Chem. 46:1097–1099.

    CAS  Google Scholar 

  • Tani, Y., Yonehara, T., Mitani, Y., and Yamada, H., 1984, ATP production by sorbitol-treated cells of a methanol yeasts, Candida boidinii (Kloeckera sp.) no. 2201, J. Biotechnol. 1:119–127.

    CAS  Google Scholar 

  • Tani, Y., Yoon, B-D., and Yamada, H., 1985a, Production of cytochrome c by an obligate methylotroph, Methylomonas sp. YK1, Agric. Biol. Chem. 49:2385–2391.

    CAS  Google Scholar 

  • Tani, Y., Sakai, Y., and Yamada, H., 1985b, Isolation and characterization of a mutant of a methanol yeast Candida boidinii S2, with a higher formaldehyde productivity, Agric. Biol. Chem. 49:2699–2706.

    CAS  Google Scholar 

  • Terui, G., 1972, Tryptophan, in: The Microbial Production of Amino Acids (K. Yamada, S. Kinoshita, T. Tsunoda, and K. Aida, eds.), Kodansha, Tokyo, pp. 515–531.

    Google Scholar 

  • Thill, G., Davis, G., Stillman, C., Tschopp, J. F., Craig, W. S., Velicelbi, G., Greff, J., Akong, M., Stroman, D., Torregrossa, R. and Siegel, R. S., 1987, The methylotrophic yeast Pichia pastoris as a host for heterologous protein production, in: Microbial Growth on C 1 Compounds H. W. van Verseveld and J. A. Duine, eds.), Nijhoff, Dordrecht, pp. 289–296.

    Google Scholar 

  • Unilever, 1987, Process for preparing a catalase-free oxidase and a catalase-free oxidase-containing yeast, and the use thereof, Eur. Patent 242007.

    Google Scholar 

  • Urakami, T., Terao, I., and Nagai, I., 1981, Process for producing bacterial single cell protein from methanol, in: Microbial Growth on C 1 Compounds, Proceedings of the 3rd International Symposium (H. Dalton, ed.), Heyden, London, pp. 349–359.

    Google Scholar 

  • van Ravenswaay Claasen, J. C., and van der Linden, A. C., 1971, Substrate specificity of the paraffin hydroxylase of Pseudomonas aeruginosa, Ant. van Leeuw. 37:339–352.

    Google Scholar 

  • Verduyn, C., van Dijken, J. P., and Scheffers, W. A., 1983, A simple sensitive and accurate alcohol electrode, Biotechnol. Bioeng. 25:1049–1055.

    PubMed  CAS  Google Scholar 

  • Vongsuvanlert, V., and Tani, Y., 1988, l-Iditol production from l-sorbose by a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Technol. 66:517–523.

    CAS  Google Scholar 

  • Wegner, G. H., 1990, Emerging applications of the methylotrophic yeasts, in: Microbial Growth on C 1 Compounds, Proceedings of the 6th International Symposium (J. R. Andreesen and B. Bowien, eds.), FEMS Microbiol. Rev. 87(Special Issue), pp. 279-283.

    Google Scholar 

  • Weijers, C. A. G. M., van Ginkel, C. G., and de Bont, J. A. M., 1988, Enantiomeric composition of lower epoxyalkanes produced by methane, alkane, and alkene-utilizing bacteria, Enz. Microb. Technol. 10:214–218.

    CAS  Google Scholar 

  • Wilkinson, T. G., Topiwala, H. H., and Hamer, G., 1974, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioeng. 16:41–59.

    PubMed  CAS  Google Scholar 

  • Windass, J. D., Worsey, M. J., Pioli, E. M., Pioli, D., Barth, P. T., Atherton, K. T., Dart, E. C., Byrom, D., Powell, K., and Senior, P. J., 1980, Improved conversion of methanol to single cell protein by Methylophilus methylotrophus, Nature (Lond.) 287:396–401.

    CAS  Google Scholar 

  • Yamada, H., Morinaga, Y., and Tani, Y., 1982, l-Methionine overproduction by ethionine-resistant mutants of obligate methylotroph strain OM33, Agric. Biol. Chem. 46:47–55.

    CAS  Google Scholar 

  • Yamada, H., Miyazaki, S. S., Shirae, H., and Izumi, Y., 1985, Threonine production from glycine and ethanol by a methanol utilizing bacterium, J. Ferment. Technol. 63:507–513.

    CAS  Google Scholar 

  • Yamada, H., Miyazaki, S. S., and Izumi, Y., 1986, l-Serine production by a glycine resistant mutant of methylotrophic Hyphomicrobium methylovorum, Agric. Biol. Chem. 50:17–21.

    CAS  Google Scholar 

  • Yonehara, T., and Tani, Y., 1988, ATP production by a methanol yeast, Candida boidinii (Kloeckera sp.) no 2201: effects of sorbitol treatment and zinc on cell structure as to ATP production, Agric. Biol. Chem. 52:909–914.

    CAS  Google Scholar 

  • Yoon, B. D., Uena, M., and Tani, Y., 1987, Improvement in cytochrome c production by glycine analog-resistant mutants of Methylomonas sp., J. Ferment. Technol. 65:629–634.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leak, D.J. (1992). Biotechnological and Applied Aspects of Methane and Methanol Utilizers. In: Murrell, J.C., Dalton, H. (eds) Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2338-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2338-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2340-0

  • Online ISBN: 978-1-4899-2338-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics