Skip to main content

The Genetics and Molecular Biology of Obligate Methane-Oxidizing Bacteria

  • Chapter
Methane and Methanol Utilizers

Part of the book series: Biotechnology Handbooks ((BTHA,volume 5))

Abstract

A considerable amount of information on the physiology and biochemistry of obligate methane-oxidizing bacteria (methanotrophs) has emerged over the last 20 or so years (Anthony, 1986; Chapter 3, this volume), particularly regarding the metabolism of methane into cell carbon and also nitrogen assimilation. In contrast, the genetics of these organisms is far less well developed, which is in part due to the relatively slow growth of methanotrophs on solid media. To carry out genetic studies on microorganisms, it is necessary to develop the capabilities for mutant isolation and gene transfer. Traditionally, methanotrophs have proved refractory to most forms of conventional genetic analysis. However, with the advent of gene-cloning technology and the development of numerous broad-host-range cloning vectors, a number of significant advances are being made in the molecular genetics of methanotrophs. In this chapter, I will review the current literature on the mutagenesis, plasmid, bacteriophage, and gene transfer studies carried out on methanotrophs and then concentrate on the more recent developments in molecular genetics related to Cl-specific genes, such as those encoding for methanol dehydrogenase and methane monooxygenase, and also the molecular biology of nitrogen assimilation genes, which has served as a model system in which to develop genetic techniques for this unique group of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, L. N., and Hanson, R. S., 1985, Construction of broad-host-range cosmid vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol, J. Bacteriol. 161:955–962.

    PubMed  CAS  Google Scholar 

  • Al-Taho, N. M., and Warner, P. J., 1987, Restoration of phenotype in Escherichia coli auxotrophs by pULB113-mediated mobilisation from methylotrophic bacteria, FEMS Microbioi Lett. 43:235–239.

    Article  Google Scholar 

  • Al-Taho, N. M., Cornish, A., and Warner, P. J., 1990, Molecular cloning of the methanol dehydrogenase structural gene from Methylosinus trichosporium OB3b, Curr. Microbiol. 20:153–157.

    Article  CAS  Google Scholar 

  • Anthony, C., 1986, Bacterial oxidation of methane and methanol, Adv. Micro. Physiol. 27:113–210.

    Article  CAS  Google Scholar 

  • Bagdasarian, M., Lurz, R., Ruckert, B., Franklin, F. C. H., Bagdasarian, M. M., Frey, J., and Timmis, K. N., 1981, Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF1010-derived vectors and a host vector system for gene cloning in Pseudomonas, Gene 16:237–247.

    Article  CAS  Google Scholar 

  • Bainbridge, B. W., 1983, The potential of methylotrophic bacteria: genetic approaches to improving bacteria of industrial interest, in: Advances in Fermentation Conference Proceedings (supplement to Process Biochemistry), Wheatland Journals, Rickmansworth, England, pp. 97–107.

    Google Scholar 

  • Best, D. J., and Higgins, I. J., 1981, Methanol-oxidizing activity and membrane morphology in a methanol-grown obligate methanotroph, Methylosinus trichosporium OB3b, J. Gen. Microbiol. 125:73–84.

    CAS  Google Scholar 

  • Boulnois, G. J., Varley, J. M., Sharpe, G. S., and Franklin, F. C. H., 1985, Transposon donor plasmids, based on Collb-P9 for use in Pseudomonas putida and a variety of other gram negative bacteria, Mol. Gen. Genet. 200:65–67.

    Article  PubMed  CAS  Google Scholar 

  • Brusseau, G. A., Tsien, H-G., Hanson, R. S., and Wackett, L. P., 1990, Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity, Biodegradation 1:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, K. J., Cornish, A., Scott, D., and Higgins, I. J., 1984, Substrate specificities of the soluble and particulate methane monooxygenase of Methylosinus trichosporium OB3b, J. Gen. Microbiol. 130:3327–3333.

    CAS  Google Scholar 

  • Cardy, D. L. N., 1989, The molecular biology of ammonia assimilation in the obligate methane-oxidizing bacterium Methylococcus capsulatus (Bath), Ph.D. thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Cardy, D. L. N., and Murrell, J. C., 1990, Cloning, sequencing and expression of the glutamine synthetase structural gene (glnA) from the obligate methanotroph Methylococcus capsulatus (Bath), J. Gen. Microbiol. 136:343–352.

    Article  PubMed  CAS  Google Scholar 

  • Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., 1991a, Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b, Mol. Microbiol. 5:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., 1991b, The methane monooxygenase gene cluster of Methylosinus trichosporium OB3b; cloning and sequencing of the mmo C gene, Arch. Microbiol., in press.

    Google Scholar 

  • Chassey, B. M., Mercenier, A., and Flickinger, J., 1988, Transformation of bacteria by electroporation, Trends Biotechnol. 6:303–309.

    Article  Google Scholar 

  • Collins, J. F., and Coulson, A. F. W., 1987, Molecular sequence comparison and sequence alignment, in: Nucleic Acid and Protein Sequence Analysis: A Practical Approach (M. J. Bishop and C. J. Rawkins, eds.), IRL Press, Oxford, pp. 323–358.

    Google Scholar 

  • Dixon, R., 1984, The genetic complexity of nitrogen fixation, J. Gen. Microbiol. 130:2745–2755.

    PubMed  CAS  Google Scholar 

  • Eccleston, M., and Kelly, D. P., 1972a, Assimilation and toxicity of exogenous amino acids in the methane-oxidizing bacterium Methylococcus capsulatus, J. Gen. Microbiol. 71:521–554.

    Google Scholar 

  • Eccleston, M., and Kelly, D. P., 1972b, Competition among amino acids for incorporation into Methylococcus capsulatus, J. Gen. Microbiol. 73:303–314.

    Article  CAS  Google Scholar 

  • Fiedler, S., and Wirth, R., 1988, Transformation of bacteria with plasmid DNA by electroporation, Anal. Biochem. 170:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Figurski, D., and Helinski, D. R., 1979, Replication of an origin-containing derivative of the plasmid RK2 dependent on a plasmid function provided in trans., Proc. Natl. Acad. Sci. USA 76:1648–1652.

    Article  CAS  Google Scholar 

  • Friedman, M., Long, S. R., Brown, S. E., Buikema, W. J., and Ausubel, F. M., 1982, Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhiwbium mutants, Gene 18:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Haber, C. L., Allen, L. N., and Hanson, R. S., 1983, Methylotrophic bacteria: diversity and genetics, Science 221:1147–1152.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, R. S., 1980, Ecology and diversity of methylotrophic organisms, Adv. Appl. Microbiol. 26:3–39.

    Article  CAS  Google Scholar 

  • Harwood, J. H., Williams, E., and Bainbridge, B. W., 1972, Mutation of the methane oxidizing bacterium, Methylococcus capsulatus, J. Appl. Bact. 35(1):99–108.

    Article  CAS  Google Scholar 

  • Haselkorn, R., 1986, Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria, Annu. Rev. Microbiol. 40:525–547.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D. G., and Sharp, P. M., 1988, CLUSTAL: a package for performing multiple sequence alignments on a microcomputer, Gene 73:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D. G., and Sharp, P. M., 1989, Fast and sensitive multiple sequence alignments on a microcomputer, CABIOS 5:151–153.

    PubMed  CAS  Google Scholar 

  • Holloway, B. W., 1981, The application of pseudomonad-based genetics to methanotrophs, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 317–324.

    Google Scholar 

  • Holloway, B. W., Kearney, P. P., and Lyon, B. R., 1987, The molecular genetics of Cr utilizing micro-organisms — an overview, in: Proceedings of the 5th International Symposium, Microbial Growth on C 1 Compounds (H. W. Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 223–229.

    Chapter  Google Scholar 

  • Hou, C. T., Laskin, A. I., and Patel, R., 1978, Growth and polysaccharide production by Methylocystis parvus OBBP on methanol, Appl. Environ. Microbiol. 37:800–804.

    Google Scholar 

  • Keen, N. T., Tamaki, S., Kobayashi, D., and Trollinger, D., 1988, Improved broad-hostrange plasmids for DNA cloning in gram-negative bacteria, Gene 70:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, V. C., and Nester, E. W., 1982, Wide host range cloning vectors: a cosmid clone bank of Agrobacterium Ti plasmids, Plasmid 8:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Leak, D. J., and Dalton, H., 1983, In vitro studies of primary alcohols, aldehydes and carboxylic acids as electron donors for the methane monooxygenase in a variety of methanotrophs, J Gen. Microbiol. 129:3487–3497.

    CAS  Google Scholar 

  • Lidstrom, M. E., and Wopat, A. E., 1984, Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis, Arch. Microbiol. 140:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Lidstrom, M. E., Wopat, A. E., Nunn, D. N., and Toukdarian, A. E., 1984, Manipulation of methanotrophs, in: Genetic Control of Environmental Pollutants (G. S. Omenn and A. Hollaender, eds.), Plenum Press, New York, pp. 273–279.

    Google Scholar 

  • Lidstrom-O’Connor, M. E., Fulton, G. F., and Wopat, A. E., 1983, Methylobacterium ethanolicum: a syntrophic association of two methylotrophic bacteria, J. Gen. Microbiol. 129:3139–3148.

    CAS  Google Scholar 

  • Lynch, M. J., Wopat, A. E., and O’ Connor, M. E., Characterization of two new facultative methanotrophs, Appl. Environ. Microbiol. 40:400-407.

    Google Scholar 

  • Lund, J., Woodland, W. P., and Dalton, H., 1985, Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath), Eur.J. Biochem. 147:297–305.

    Article  PubMed  CAS  Google Scholar 

  • McPheat, W. L., Mann, N. H., and Dalton, H., 1987a, Isolation of mutants of the obligate methanotroph Methylomonas albus defective in growth on methane, Arch. Microbiol. 148:40–43.

    Article  CAS  Google Scholar 

  • McPheat, W. L., Mann, N. H., and Dalton, H., 1987b, Transfer of broad host range plasmids to the type I obligate methanotroph Methylomonas albus, FEMS Micro. Lett. 41:185–188.

    Article  CAS  Google Scholar 

  • Merrick, M. J., 1988, Regulation of nitrogen assimilation by bacteria, in: SGM Symposium 42, The Nitrogen and Sulphur Cycle (J. A. Cole and S. J. Ferguson, eds.), Cambridge University Press, Cambridge, pp. 331–361.

    Google Scholar 

  • Mullens, I. A., and Dalton, H., 1987, Cloning of the gamma-subunit methane monooxygenase from Methylococcus capsulatus, Biotechnology 5:490–493.

    Article  CAS  Google Scholar 

  • Murrell, J. C., 1981, Nitrogen metabolism in the obligate methane-oxidizing bacteria, Ph.D. thesis, University of Warwick, Coventry, England.

    Google Scholar 

  • Murrell, J. C., and Dalton, H., 1983a, Nitrogen fixation in obligate methanotrophs, J. Gen. Microbiol. 129:3481–3486.

    CAS  Google Scholar 

  • Murrell, J. C., and Dalton, H., 1983b, Purification and properties of glutamine synthetase from Methylococcus capsulatus (Bath), J. Gen. Microbiol. 129:1187–1196.

    CAS  Google Scholar 

  • Nicolaidis, A. A., and Sargent, A. W., 1987, Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium OB3b using dichloromethane, FEMS Mkrobiol. Lett. 41:47–52.

    Article  CAS  Google Scholar 

  • Nordlund, P., Sjöberg, B-M., and Eklund, H., 1990, Three-dimensional structure of the free radical protein of ribonucleotide reductase, Nature 345:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Nunn, D. N., and Lidstrom, M. E., 1986a, Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AMI, J. Bacteriol. 166:581–590.

    PubMed  CAS  Google Scholar 

  • Nunn, D. N., and Lidstrom, M. E., 1986b, Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AMI, J. Bacteriol. 166:591–597.

    PubMed  CAS  Google Scholar 

  • Oakley, C. J., and Murrell, J. C., 1988, nifH genes in the obligate methane-oxidizing bacteria, FEMS Mkrobiol. Lett. 49:53–57.

    Article  Google Scholar 

  • O’Connor, M. L., 1981, Regulation and genetics in facultative methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 294–300.

    Google Scholar 

  • Pawlowski, K., Ratet, P., Sohell, J., and de Bruijn, F. J., 1987, Cloning and characterization of nifA and ntrC genes of the stem nodulating bacterium ORS571, the nitrogen fixing symbiont of Sesbania rostrata, Mol. Gen. Genet. 206:207–216.

    Article  CAS  Google Scholar 

  • Pilkington, S. J., Salmond, G. P. C., Murrell, J. C., and Dalton, H., 1990, Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase, FEMS Mkrobiol. Lett. 77:345–349.

    Article  Google Scholar 

  • Queen, L., and Korn, L. J., 1986, A comprehensive sequence analysis program for the IBM personal computer, Nucl. Acid. Res. 12:581–599.

    Article  Google Scholar 

  • Sharpe, G. S., 1984, Broad-host-range cloning vectors for gram-negative bacteria, Gene, 29:93–102.

    Article  PubMed  CAS  Google Scholar 

  • Simon, R., Priefer, U., and Pühler, A., 1983, Vector plasmids for in vivo and in vitro manipulation of gram-negative bacteria, in: Molecular Genetks of the Bacteria-Plant Interaction (A. Pühler, ed.), Springer-Verlag, Berlin, Heidelberg, pp. 98–106.

    Chapter  Google Scholar 

  • Stainthorpe, A. C., Murrell, J. C., Salmond, G. P. C., Dalton, H., and Lees, V., 1989, Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath), Arch. Mkrobiol. 152:154–159.

    CAS  Google Scholar 

  • Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H., and Murrell, J. C., 1990a, The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath), Gene 91:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Stainthorpe, A C., Salmond, G. P. C., Dalton, H., and Murrell, J. C., 1990b, Screening of obligate methanotrophs for soluble methane monooxygenase genes, FEMS Mkrobiol. Lett. 70:211–216.

    CAS  Google Scholar 

  • Stephens, R. L., Haygood, M. G., and Lidstrom, M. E., 1988, Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of moxF genes from Methylococcus capsulatus (Bath) and Methylomonas albus BG8, J. Bacteriol. 170:2063–2069.

    PubMed  CAS  Google Scholar 

  • Szeto, W. W., Nixon, B. T., Ronson, C. W., and Ausubel, F. M., 1987, Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells, J. Bacteriol. 169:1423–1432.

    PubMed  CAS  Google Scholar 

  • Tabor, S., and Richardson, C. C., 1985, A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes, Proc. Natl. Acad. Sci. USA 82:1074–1078.

    Article  PubMed  CAS  Google Scholar 

  • Tatra, P. K., and Goodwin, P. M., 1984, R-factor mediated chromosome mobilization in the facultative methylotroph Pseudomonas sp. strain AMI, in: Mkrobial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 224–227.

    Google Scholar 

  • Tikhonenko, A. S., Bespalova, I. A., Tyutikov, F. M., Martynkina, L. P., Gal’chenko, V. F., and Kriviskii, A. S., 1982, Lysogeny in methanotrophic bacteria, Mikrobiologiya 51:482–486.

    Google Scholar 

  • Toukdarian, A. E., and Lidstrom, M. E., 1984a, DNA hybridization analysis of the nif region of two methylotrophs and molecular cloning of nif-specific DNA, J. Bacteriol. 153:925–930.

    Google Scholar 

  • Toukdarian, A. E., and Lidstrom, M. E., 1984b, Molecular construction and characterization of nif mutants of the obligate methanotroph Methylosinus sp. strain 6, J. Bacteriol. 157:979–983.

    PubMed  CAS  Google Scholar 

  • Tyutikov, F. M., Belyaevf, N. N., Smirnova, L. C., Tikhonenko, A. S., and Krivisky, A. S., 1976, Isolation of bacteriophages of methane-oxidizing bacteria, Mikrobiologiya 6:1056–1062.

    Google Scholar 

  • Tyutikov, F. M., Bespalova, I. A., Rebentish, B. A., Aleksandrushkina, N. N., and Krivisky, A. S., 1980, Bacteriophages of methanotrophic bacteria, J. Bacteriol. 144:375–381.

    PubMed  CAS  Google Scholar 

  • Tyutikov, F. M., Yesipova, V. V., Rebentish, B. A., Bepalova, I. A., Alexandrushkina, N. I., Galchenko, V. V., and Tikhonenko, A. S., 1983, Bacteriophages of methanotrophs isolated from fish, Appl. Environ. Microbiol. 46:917–924.

    PubMed  CAS  Google Scholar 

  • Waechter-Brulla, D., and Lidstrom, M. E., 1990, Localization of the putative promoter for the moxF gene ofMethylomonas sp. A4, in: Abstracts of the Annual Meeting, American Society for Microbiology, Anaheim, CA, p. 234.

    Google Scholar 

  • Warner, P. J., Higgins, I. J., and Drozd, J. W., 1977, Examination of obligate and facultative methanotrophs for plasmid DNA, FEMS Microbiol. Lett. 1:339–342.

    Article  CAS  Google Scholar 

  • Warner, P. J., Higgins, I. J., and Drozd, J. W., 1980, Conjugative transfer of antibiotic resistance to methylotrophic bacteria, FEMS Microbiol. Lett. 7:181–185.

    Article  CAS  Google Scholar 

  • Whittenbury, R., and Dalton, H., 1981, The methylotrophic bacteria, in: The Proharyotes. A Handbook of Habitats, Isolation, and Identification of Bacteria (M. P. Starr, H. Stolp, H. G. Triiper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 894–902.

    Google Scholar 

  • Whittenbury, R., Phillips, K. C., and Wilkinson, J. F., 1970, Enrichment, isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol. 61:205–218.

    Article  PubMed  CAS  Google Scholar 

  • Williams, E., and Bainbridge, B. W., 1971, Genetic transformation in Methylococcus capsulatus, J. Appl. Bacteriol. 34:683–687.

    Article  CAS  Google Scholar 

  • Williams, E., and Bainbridge, B. W., 1976, Mutation repair mechanisms and transformation in the methane-utilizing bacterium Methylococcus capsulatus, in: Genetics of Industrial Microorganisms (K. D. MacDonald, ed.), 2nd International Symposium, Academic Press, London, pp. 313–321.

    Google Scholar 

  • Williams, E., and Shimmin, M. A., 1978, Radiation-induced filamentation in obligate methylotrophs, FEMS Microbiol. Lett. 4:137–141.

    Article  Google Scholar 

  • Williams, E., Shimmin, M. A., and Bainbridge, B. W., 1977, Mutation in the obligate methylotrophs Methylococcus capsulatus and Methylomonas albus, FEMS Microbiol. Lett. 2:293–296.

    Article  CAS  Google Scholar 

  • Wirth, R., Friessenegger, A., and Fiedler, S., 1989, Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation, Mol. Gen. Genet. 216:175–177.

    Article  PubMed  CAS  Google Scholar 

  • Woodland, M. P., and Dalton, H., 1984, Purification and properties of component A of the methane monooxygenase from Methylococcus capsulatus (Bath), J. Biol. Chem. 259:53–59.

    PubMed  CAS  Google Scholar 

  • Wünsche, L., Werner, B., Hauche, H., Kadelmann, W. J., Hilger, U., Krivisky, A. S., Jessipowa, W. W., Tikhonenko, A. S., and Zimmermann, I., 1977, Nachweis und erste Characterisierung von Bakteriophagen obligat methanassimilierender Bakterien, Z. Allg. Mikrobiol. 17:321–323.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murrell, J.C. (1992). The Genetics and Molecular Biology of Obligate Methane-Oxidizing Bacteria. In: Murrell, J.C., Dalton, H. (eds) Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2338-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2338-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2340-0

  • Online ISBN: 978-1-4899-2338-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics