Skip to main content

Part of the book series: Biotechnology Handbooks ((BTHA,volume 5))

Abstract

I perceive the purpose of an introductory chapter as an opportunity to integrate the topics of interest to be found later in a volume without unnecessarily duplicating information. It has taken the form of a brief historical perspective, as well as a means of identifying some gaps in information needed to serve the needs of biotechnologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramochinka, F. N., Bezrukova, L. V., Koshelev, A. V., Gal’chenko, V. F., and Ivanov, M. V., 1987, Microbial oxidation of methane in a body of freshwater, Microbiology 56:375–382.

    Google Scholar 

  • Akent’eva, N. P., and Gvozdev, R. I., 1988, Purification and physicochemical properties of methane monooxygenase from membrane structures of Methylococcus capsulatus, Bio-chem. USSR 53:79–83.

    Google Scholar 

  • Alawadhi, N., Egli, T. and Hamer, G., 1988, Growth characteristics of a thermotolerant methylotrophic Bacillus sp in batch culture, Appl. Microbiol. Biotech. 29:485–493.

    CAS  Google Scholar 

  • Allen, L. H., and Hanson, R. S., 1985, Construction of broad host-range cosmid cloning vectors: identification of genes necessary for growth oiMethylobacterium organophilum on methanol, J. Bacteriol. 161:955–962.

    PubMed  CAS  Google Scholar 

  • Anthony, C., 1982, The Biochemistry of Methylotrophs, Academic Press, New York.

    Google Scholar 

  • Arciero, D., Vannelli, T., Logan, M., and Hooper, A. B., 1989, Degradation of trichloro-ethylene by the ammonia-oxidizing bacterium Nitrosomonas europea, Biochem. Res. Commun. 159:640–643.

    CAS  Google Scholar 

  • Bastien, C., Machlin, S., Zhang, Y., Donaldson, K., and Hanson, R. S., 1989, Organization of genes required for the oxidation of methanol to formaldehyde in three type II methanotrophs, Appl. Environ. Microbiol. 55:124–3130.

    Google Scholar 

  • Bedard, C., and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev. 53:68–84.

    PubMed  CAS  Google Scholar 

  • Bohanon, M. J., Bastien, C. A., Yoshida, R., and Hanson, R. S., 1987, Isolation of auxo-trophic mutants of Methylophilus methylotrophus by modified-marker exchange, Appl. Environ. Microbiol. 54:271–273.

    Google Scholar 

  • Brooke, A. G., Wading, E. M., Attwood, M. M., and Tempest, D. W., 1989, Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains, Arch. Microbiol. 151:268–273.

    CAS  Google Scholar 

  • Byrom, D., 1984, Host-vector systems for Methylophilus methylotrophus. Microbial growth on C1 compounds, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, DC, pp. 221-223.

    Google Scholar 

  • Cavanaugh, C. M., Levering, P. R., Maki, J. S., Mitchell, R., and Lidstrom, M., 1987, Symbiosis of methylotrophic bacteria and deep-sea mussels, Nature 325:346–348.

    Google Scholar 

  • Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C., II, Bridigare, R., and Anderson, A. E., 1986, A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: methane-oxidizing mussels, Science 233(4770):1306.

    PubMed  CAS  Google Scholar 

  • Claus, G., and Kutzner, H. J., 1985, Denitrification of nitrate and nitric acid with methanol as carbon source, Appl. Microbiol. Biotech. 22(5):378.

    CAS  Google Scholar 

  • Colby, J., Stirling, D. I., and Dalton, H., 1977, The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds, Biochem. J. 165:395–402.

    PubMed  CAS  Google Scholar 

  • Corpe, W. A., 1985, A method for detecting methylotrophic bacteria on solid surfaces, J. Microbiol Methods. 3(3–4):215–223.

    Google Scholar 

  • Cregg, J. M., Tschoop, J. F., Stillman, C., Siegel, R., Akong, M., Craig, W. S., Buckholz, R. G., Madden, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregrosse, R., Velicelebi, G., and Thill, G. P., 1987, High-level expression and efficient assembly of hepatitis-B surface antigen in the methylotrophic yeast, Pichia pastoris, Biotechnology 5:479–485.

    CAS  Google Scholar 

  • Crutzen, P. J., and Graedel, T. E., 1986, The role of atmospheric chemistry in environment development interactions, in: Sustainable Development of the Biosphere (W. C. Clark and R. E. Munn, eds.), Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Dagley, S., 1975, A biochemical approach to some problems of environmental pollution, in: Essays in Biochemistry (P. N. Campbell and W. N. Aldrige, eds.), Academic Press, London, pp. 81–138.

    Google Scholar 

  • Dalton, H., and Higgins, I. J., 1987, Physiology and biochemistry of methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 89–94.

    Google Scholar 

  • Davies, S. L., and Whittenbury, R., 1970, Fine structure of methane and other hydrocarbon-utilizing bacteria, J. Gen. Microbiol. 61:227–232.

    PubMed  CAS  Google Scholar 

  • De Long, E. F., Wickham, G. S., and Pace, N. R., 1989, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells, Science 243:1360–1363.

    Google Scholar 

  • De Vries, G. E., 1986, Molecular biology of bacterial methanol oxidation, FEMS Microbiol. Rev. 39(3):235–258.

    Google Scholar 

  • Dijkhuizen, L. N., Arfman, M. M., Attwood, A. G., Brooke, W., Harder, and Watling, E. M., 1988, Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains, FEMS Microbiol. Lett. 52:209–214.

    Google Scholar 

  • Duine, J. A., Frank, J., and Jongejan, J. A., 1986, PQQ and quinoprotein enzymes in mkrobial oxidation, FEMS Microbiol. Rev. 32:165–178.

    CAS  Google Scholar 

  • Dworkin, M., and Foster, J. W., 1956, Studies on Pseudomonas methanica. (Söhngen) Nov. Comb., J. Bacteriol. 91:646–659.

    Google Scholar 

  • Ehalt, D. H., 1976, The atmospheric cycle of methane, in: Symposium on Mkrobial Production and Utilization of Genes (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), Acad. der Wissenschaften, Gottingen, pp. 13–22.

    Google Scholar 

  • Ericson, A., Hedman, B., Hodgson, K. O., Green, J., Dalton, H., Bentsen, J. G., Beer, R. H., and Lippard, S. J., 1988, Structural characterization by EXAFS spectroscopy of the binuclear iron center in protein A of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 110:2330–2331.

    CAS  Google Scholar 

  • Fischer, G., Neftel, A., and Oeschger, H., 1985, Increase of atmospheric methane recorded in antarctic ice core, Science 299(4720):1386–1388.

    Google Scholar 

  • Fogel, M. M., Taddeo, A. R., and Fogel, S., 1986, Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture, Appl. Environ. Mkrobiol. 51(4):720–724.

    CAS  Google Scholar 

  • Fox, B. G., and Lipscomb, J. D., 1988, Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph, Biochem. Bio-phys. Res. Comm. 154:165–170.

    CAS  Google Scholar 

  • Fox, B. G., Surerus, K. K., Munck, E., and Lipscomb, J. D., 1988, Evidence for a n-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase, Mossbauer and EPR studies, J. Biol. Chem. 263:10553–10556.

    PubMed  CAS  Google Scholar 

  • Fox, B. G., Froland, W. A., Dege, J., and Lipscomb, J. D., 1989. Methane monooxygenase from Methylosinus trkhosporium OB3b, J. Biol. Chem. 264:10023–10033.

    PubMed  CAS  Google Scholar 

  • Galli, R., and Leisinger, T., 1985, Specialized bacterial strains for the removal of dichloro-methane from industrial waste, Conserv. Recycling 8:91–100.

    Google Scholar 

  • Gautier, F., and Bonewald, R., 1980, The use of plasmid R1162 and derivatives for gene cloning in the methanol utilizing Pseudomonas AMI, Mol. Gen. Genet. 178:375–380.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., DeLong, E. F., Olsen, G. J., and Pace, N. R., 1988, Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells, J. Bacteriol. 170:720–726.

    PubMed  CAS  Google Scholar 

  • Graedel, T. E., and Crutzen, P. J., 1989, The changing atmosphere, Sci. Am. 261:136–143.

    Google Scholar 

  • Green, J., and Dalton, H., 1989, A stopped-flow kinetic study of soluble methane monooxygenase from Methylococcus capsulatus (Bath), Eur.J. Biochem. 153(1):137–144.

    Google Scholar 

  • Green, P., and Bousefield, I. J., 1983, Emendation of Methylobacterium. Patt, Cole and Hanson, 1976; Methylobacterium rhodium (Heuman, 1962). Comb. Nov. (corrig: Methylobacterium radiotolerans (Ito and Iizuka, 1971) Comb. Nov. corrig., Int. J. Syst. Bacteriol. 33:875–877.

    Google Scholar 

  • Haber, C. L., Allen, L. N., and Hanson, R. S., 1983, Methylotrophic bacteria: biochemical diversity and genetics, Science 221:1147–1151.

    PubMed  CAS  Google Scholar 

  • Hanson, R. S., 1980, Ecology and diversity of methylotrophic organisms, Adv. Appl. MkroUol. 26:3–39.

    CAS  Google Scholar 

  • Hanson, R. S., Tsuji, K., Bastien, C., Tsien, H. C., Bratina, B., Brusseau, G., and Machlin, S., 1989, in: Coal and Gas Biotechnology (C. Akin, ed.), Institute for Gas Technology, Chicago.

    Google Scholar 

  • Hanson, R. S., Netrosev, A. I., and Tsuji, K., 1991, The obligate methylotrophic bacteria, in: The Prokaryotes, Belowes, A., Trouper, H., Dworkin, M., and Sleifer, K. (eds.), Springer-Verlag, pp. 2350-2364.

    Google Scholar 

  • Harder, W., and Attwood, M. M., 1978, Biology, physiology and biochemistry of Hyphomi-crobia, Adv. Microbiol. Physiol. 17:303–359.

    CAS  Google Scholar 

  • Harms, N., De Vries, G. E., Maurer, K., Veitkamp, E., and Stouthamer, A. H., 1985, Isolation and characterization of Paracoccus denitrificans mutants with defects in the metabolism of one-carbon compounds, J. Bacteriol 164(3):1064–1070.

    PubMed  CAS  Google Scholar 

  • Harms, N., De Vries, G. E., Maurer, K., Hoogendak, J., Stouthamer, A. H., 1987, Isolation and nucleotide sequence of methanol dehydrogenase structural gene from Paracoccus denitrificans, J. Bacteriol. 169:3969–3975.

    PubMed  CAS  Google Scholar 

  • Heyer, J., 1977, Results of enrichment experiments of methane-assimilating organisms from an ecological point of view, in: G. A. Skryabin, Ivanov, M. B., Kondratjeva, E. N., Zavarzin, G. A., Trotsenko, Yu. A., and Netrosev, A. I. (eds.), Microbial Growth on C1 Compounds, U.S.S.R. Academy of Sciences, Rusching, pp. 19-21.

    Google Scholar 

  • Higgins, I. J., Best, D. J., Hammond, R. C, and Scott, D., 1981, Methane oxidizing microorganisms, Microbiol. Rev. 45:556–590.

    PubMed  CAS  Google Scholar 

  • Holloway, B. W., 1984, Genetics of methylotrophs, in: Methylotrophs: Microbiology, Biochemistry and Genetics (C. T. Hou, ed.), CRC Press, Boca Raton, FL, pp. 87–104.

    Google Scholar 

  • Holloway, B. W., Kearny, P. P. and Lyon, B. R., 1987, The molecular genetics of C1-utilizing organisms: an overview, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Martinies Nyhoff, Dordrecht, pp. 223–229.

    Google Scholar 

  • Hou, C. T., 1984, Propylene oxide production from propylene by immobilized whole cells of Methylosinus sp. CRL 31 in a gas-solid bioreactor, Appl. Microbiol. Biotech. 19:1.

    CAS  Google Scholar 

  • Houghton, R. A., and Woodwell, G. M., 1989, Global climatic change, Sa. Am. 260:36–47.

    CAS  Google Scholar 

  • Hutton, W. E., and Zobell, C. E., 1949, The occurrence and characteristics of methane-oxidizing bacteria in marine sediment, J. Bacteriol. 58:463–473.

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and Wood, P. M., 1983, Methane oxidation by Nitrosomonas europea, Biochem. J. 212:31–37.

    PubMed  CAS  Google Scholar 

  • Imai, T., Takigawa, H., Nakagawa, S., Tohru Kodama, G.-J., and Minoda, Y., 1986, Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium H-2, Appl. Environ. Microbiol. 52(6):1403–1406.

    PubMed  CAS  Google Scholar 

  • Jenkins, O., and Jones, D., 1987, Taxonomic studies on some gram-negative methylotrophic bacteria, J. Gen. Microbiol. 133:453–473.

    CAS  Google Scholar 

  • Khalil, M. A. R., and Rassmussen, R. A., 1986, Interannual variability of atmospheric methane: possible effects of El-Nino-Southern oscillation, Science 232:56–58.

    PubMed  CAS  Google Scholar 

  • Kohler-Staub, D., and Leisinger, T., 1985, Dichloromethane dehalogenase of Hyphomicrobium sp. strain DMZ, J. Bacteriol. 162:676–681.

    PubMed  CAS  Google Scholar 

  • Large, P. J., and Bamforth, C. W., 1988, Methylotrophy and Biotechnology, Longman, Wiley, New York.

    Google Scholar 

  • LaRoche, S. D., and Leisinger, T., 1990, Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione-trans-ferase supergene family, J. Bacteriol. 172:164–171.

    CAS  Google Scholar 

  • Laurinavichus, K. S., Belyayev, S. S., and Ivanov, M. V., 1978, A study of microbiological oxidation process of methane in the freshwater lakes of the Mari USSR, Izv. Akad. Nauk SSR Ser.Biol. 2:309–311.

    Google Scholar 

  • Lawrence, A. J., and Quayle, J. R., 1970, Alternative carbon assimilation pathways in methane-utilizing bacteria, J. Gen. Microbiol. 63:371–374.

    PubMed  CAS  Google Scholar 

  • Leadbetter, E. D., and Foster, J. W., 1958, Studies of some methane utilizing bacteria, Arch. Microbiol. 30:91–118.

    CAS  Google Scholar 

  • Levering, P. R., Tiesma, L., Woldendrop, J. P., Steensma, M., and Dijkhuizen, L., 1987, Isolation and characterization of mutants of the facultative methylotroph Arthrobacter PI blocked in one-carbon metabolism, Arch. Microbiol. 146(4):346–352.

    CAS  Google Scholar 

  • Lidstrom, M. E., 1983, Methane consumption in Framvaren, an anoxic marine fjord, Limnol. Oceanogr. 28:1247–1251.

    CAS  Google Scholar 

  • Lidstrom, M. E., 1988, Isolation and characterization of marine methanotrophs, Ant. Van Leeuw. 54:189–199.

    CAS  Google Scholar 

  • Linton, J. D., and Neikus, H. G. D., 1987, The potential of one-carbon compounds as fermentation feedstocks, in: Microbial Growth on C 1 Compounds (H. W. van Verseveld and J. A. Duine, eds.), Martinus Hijhoff, Dordrecht.

    Google Scholar 

  • Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J., 1988, Trichloroethylene biodegradation by a methane oxidizing bacterium, Appl. Env. Microbiol. 54:951–956.

    CAS  Google Scholar 

  • Machlin, S. M., and Hanson, R. S., 1988, Nucleotide sequence and transcriptional start site of Methylobacterium organophilum XX methanol dehydrogenase structural gene, J. Bacteriol. 170:474–477.

    Google Scholar 

  • Machlin, S. M., Tarn, P. E., Bastien, C. A., and Hanson, R. S., 1987, Genetic and physical analysis of Methylobacterium organophilum XX genes encoding methanol oxidation, J. Bacteriol. 170:141–148.

    Google Scholar 

  • Moore, A. T., Nayudu, M., and Holloway, B. W., 1983, Genetic mapping in Methylophilus methylotrophus. ASI, J. Gen. Microbiol. 129:785–799.

    PubMed  CAS  Google Scholar 

  • Mullens, I. A., and Dalton, H., 1987, Cloning of the gamma-subunit methane monoogygen-ase from Methylococcus capsulatus, Biotechnology 5:490–493.

    CAS  Google Scholar 

  • Nelson, M. J. K., Montgomery, S. O., O’Neil, E. J., and Pritchard, P. H., 1986, Aerobic metabolism of trichloroethylene by a bacterial isolate, Appl. Environ. Microbiol. 52:383–384.

    PubMed  CAS  Google Scholar 

  • Nicolaidis, A. A., and Sargent, A. W., 1987, Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium 0B3b using dichloromethane, FEMS Microbiol. Lett. 41:47–52.

    CAS  Google Scholar 

  • Nunn, D. N., Anthony, C, 1988, The nucleotide sequence and deduced amino acid sequence of the genes for cytochrome CL and a hypothetical second subunit of the methanol dehydrogenase of Methylobacterium AMI, Nucl. Acids. Res. 16:7722–7723.

    PubMed  CAS  Google Scholar 

  • Nunn, D. N., and Anthony, C., 1988b, Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AMI, J. Bacteriol. 166(2):581–590.

    Google Scholar 

  • Oldenhuis, R., Vink, R. L., Janssen, D. B., and Witholt, B., 1989, Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Appl. Environ. Microbiol. 53:2819–2826.

    Google Scholar 

  • Orla-Jensen, S., 1909, Der hauptlinien des naturlichen bacterian systems, Zentrbl. Bakteriol. Parasintenkd. Hug. Abt. II 22:97–98.

    Google Scholar 

  • Patel, R. N., and Savas, J. C, 1987, Purification and properties of the hydroxylase component of methane monooxygenase, J. Bacteriol. 169:2313–2317.

    PubMed  CAS  Google Scholar 

  • Patt, T. E., Cole, G. C., Bland, J., and Hanson, R. S., 1974, Isolation of bacteria that grow on methane and organic compounds as sole sources of carbon and energy, J. Bacteriol, 120:955–964.

    PubMed  CAS  Google Scholar 

  • Quayle, J. R., 1987, An eightieth anniversary of the study of C1 metabolism, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Martinus Nijhoff, Dordrecht, pp. 1–5.

    Google Scholar 

  • Reeburgh, W. S., 1980, Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments, Earth Planet. Sci. Lett. 46:345–352.

    Google Scholar 

  • Reed, W. N., and Dugan, P. R., 1987, Isolation and characterization of the facultative methylotroph Mycobacterium ID-Y, J. Gen. Microbiol. 113:1389–1394.

    Google Scholar 

  • Remsen, C. C., Minnich, E. C., Stephens, R. S., Bucholz, L. A., and Lidstrom, M. E., 1989, Anaerobic methane oxidation in marine sediments, J. Great Lakes Res. 15:141–146.

    CAS  Google Scholar 

  • Rudd, J. W., and Taylor, C. D., 1980, Methane cycling in aquatic environments, Adv. Aquat. Microbiol. 2:77–150.

    CAS  Google Scholar 

  • Saralov, A. I., Krylova, I. N., Saralova, E. E., and Kusnetsov, S. I., 1984, Distribution and species composition of methane-oxidizing bacteria in lake water, Microbiology 53(5):695–701.

    Google Scholar 

  • Sayre, I. M., 1988, International standards for drinking water, J. Am. Water Works Assoc. 80:53–60.

    CAS  Google Scholar 

  • Schendel, F. J., Bremmon, C. E., Flickinger, M. C., Guettler, M., and Hanson, R. S., 1990, L-lysine formation at 50°C by mutants of a newly isolated and characterized methylo-trophic Bacillus, Appl. Environ. Microbiol. 56:963–970.

    PubMed  CAS  Google Scholar 

  • Scholtz, R., Wackett, L. P., Egli, C., Cook, A. M., and Leisinger, T., 1988, Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloro-methane-utilizing bacterium, J. Bacteriol. 170:5699–5704.

    Google Scholar 

  • Sieburth, J. Mc, Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., and Lidstrom, M., 1987, The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov., Curr. Microbiol. 14:285–293.

    CAS  Google Scholar 

  • Sohngen, N. L., 1906, ßber bakterien, welche methau ab kohlenstoffnahrung and en-ergiequelle gebrauchen, Parasitenk Infectionsk. Abt. 2, 15:513–517.

    Google Scholar 

  • Stanley, S. H., and Dalton, H., 1982, Role of ribulose-l,5-bisphosphate carboxylase/oxygen-ase in Methylococcus capsulatus (Bath), J. Gen. Microbiol. 128:2927–2935.

    CAS  Google Scholar 

  • Stanley, S. H., Prior, S. D., Leak, D., and Dalton, H., 1983, Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: studies of batch and continuous cultures, Biotechnol. Lett. 5:487–490.

    CAS  Google Scholar 

  • Stephens, R. L., Haygood, M. G., and Lidstrom, M. E., 1988, Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of mox F genes from Methylococcus capsulatus (Bath) and Methylomonas albus BG8, J. Bacteriol. 170:2063–2069.

    PubMed  CAS  Google Scholar 

  • Stirling, D. L., Colby, J., and Dalton, H., 1979, A comparison of the substrate and electrondonor specifities of the methane monooxygenases from three strains of methane-oxidizing bacteria, Biochem. J. 177:361–364.

    PubMed  CAS  Google Scholar 

  • Strand, S. E., and Lidstrom, M. E., 1984, Characterization of a new marine methylotroph, FEMS Microbiol. Lett. 21:247–251.

    CAS  Google Scholar 

  • Suylen, G. M. H., and Kuenen, J. G., 1986, Chemostat enrichment and isolation of Hyphomi-crobium E.G. a dimethyl-sulphide-oxidizing methylotroph and reevaluation of Thiobacillus MSI Antonie van Leeuwenhoek, J. Microbiol. 52:281–293.

    CAS  Google Scholar 

  • Tatra, P. K., and Goodwin, P. M., 1983, R-plasmid mediated chromosome mobilization in the facultative methylotroph Pseudomonas AMI, J. Gen. Microbiol. 129:2629–2634.

    CAS  Google Scholar 

  • Tsien, H. C., Brusseau, G. A., Brusseau, R. S., Hanson, R. S., and Wackett, L., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55:2960–2964.

    Google Scholar 

  • Tsuji, K., Tsien, H. C., Hanson, R. S., De Palma, S. R., Scholtz, R., and LaRoche, S., 1990, The 16S-like ribosomal RNA sequence analysis for determining phylogenetic relationships among methylotrophs, J. Gen. Microbiol. 136:1–10.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., and McCarty, P. L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions, Appl. Environ. Microbiol. 49:1080–1083.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbiol. 55:2960–2964.

    PubMed  CAS  Google Scholar 

  • Ward, B. B., 1987, Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus., Arch. Microbiol. 147:126–133.

    CAS  Google Scholar 

  • Whittenbury, R., and Dalton, 1981, The methylotrophic bacteria in: The Procaryotes (M. P. Starr, H. Stolph, H. G. Truper, A. Balowes, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 894–902.

    Google Scholar 

  • Whittenbury, R., Phillips, K. C., and Wilkinson, J. F., 1970, Enrichment, isolation and some properties of methane utilizing bacteria, J. Gen. Microbiol. 61:205–218.

    PubMed  CAS  Google Scholar 

  • Whittenbury, R., and Krieg, N. R., 1984, Methylococcaceae fam. nov., in: Bergey’s Manual of Determinative Bacteriology, Vol. 1, Williams & Wilkins, Baltimore, pp. 256–262.

    Google Scholar 

  • Wilson, J. T., and Wilson, B. H., 1985, Biotransformation of trichloroethylene in soil, Appl. Environ. Microbiol. 49:242–243.

    PubMed  CAS  Google Scholar 

  • Windass, J. D., Worsey, M. J., Pioli, E. M., Pioli, D., Barth, P. T., Atherton, K. T., Dart, E. C., Byrom, D., Powell, K., and Senior, P. J., 1980, Improved conversion of methanol to single cell protein by Methylophilus methylotrophus, Nature (Lond.) 287:396–401.

    CAS  Google Scholar 

  • Wolfe, H. L, 1981, Biochemical characterization of methane oxidizing yeasts, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heydon, London, pp. 202–210.

    Google Scholar 

  • Wolfrum, T., and Stolp, H., 1987, Comparative studies on 5S RNA sequences of RuMP-type methylotrophic bacteria, Syst. Appl. Microbiol. 9:273–276.

    CAS  Google Scholar 

  • Woodland, M. P., and Dalton, H., 1984, Purification of component A of the soluble methane monooxygenase of Methylococcus capsulatus (Bath) by high-pressure gel permeation chromatography, Anal. Biochem. 139(2):459.

    PubMed  CAS  Google Scholar 

  • Zatman, L., 1981, A search for patterns in methylotrophic pathways, in: Microbial Growth on C 1 Compounds (H. Dalton, ed.), Heyden, London, pp. 42–54.

    Google Scholar 

  • Zhao, S.-J., and Hanson, R. S., 1984, Variants of the obligate methanotroph isolate 761M capable of growth on glucose in the absence of methane, Appl. Environ. Microbiol. 48:807–812.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanson, R.S. (1992). Introduction. In: Murrell, J.C., Dalton, H. (eds) Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2338-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2338-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2340-0

  • Online ISBN: 978-1-4899-2338-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics