Skip to main content

Abstract

Let G be a connected Lie group and let X 1,... X k be left invariant fields (i.e. X f g = (X f) g , f g (x) = f(gx)) that generate the Lie algebra. We can consider then \(\Delta = - X_1^2 - X_2^2 \cdots - X_k^2 \) and T t = e−tΔ which is a convolution semigroup since it commutes with the left action of G. It follows that if we denote by d g the left Haar measure of G, we have \(T_t f(x) = \int\limits_G {f(y)\phi _t (y^{ - 1} x)d^l y} \), cf. [1]. The behaviour of ϕ t as t → ∞ when G is unimodular, i.e. when D g = dg (= the right Haar measure up to multiplicative constant), is well understood, cf. [1], [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.Th. Varopoulos, J. Funct. Anal. 76 (1988), 346–410.

    Google Scholar 

  2. N.Th. Varopoulos, Proceedings I.C.M. 1990, Kyoto.

    Google Scholar 

  3. Ph. Bougerol, Ann. Inst. Henri Poincaxé XIX (1983), 369–391.

    MathSciNet  Google Scholar 

  4. N. Bourbaki, Fascicule XXIX, Ch. 7, “Integration”, Hermann, Paris.

    Google Scholar 

  5. V.S. Varadarajan, “Lie groups, Lie algebras and their representations,” Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  6. N.Th. Varopoulos, J. Funct. Anal. 86 (1989), 19–40.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Feller, “An introduction to probability theory and its applications,” I, 3rd edition, Wiley.

    Google Scholar 

  8. F.B. Knight, Essentials of Brownian motion and Diffusion, Math. Surveys, Amer. Math. Soc. 18 (1981).

    Google Scholar 

  9. N.Th. Varopoulos, C.R. Acad. Sci. Paris, 301 (sér. I) (1985), 865–868.

    MathSciNet  MATH  Google Scholar 

  10. N.Th. Varopoulos, J. Funct. Anal. 63 (1985), 240–260.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Varopoulos, N.T. (1992). Potential Theory on Non-Unimodular Groups. In: Picardello, M.A. (eds) Harmonic Analysis and Discrete Potential Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2323-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2323-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2325-7

  • Online ISBN: 978-1-4899-2323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics