Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 3))

Abstract

When most people think of permanent magnets, they may think of iron. They may also think that permanent magnets have been well understood for years and, therefore, pose a dull subject for research. Try asking someone when they last used a permanent magnet, and the answer may well be that it was when they used one to stick a note on their refrigerator door.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Thomas, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, G.J. Long, ed., Plenum Press, New York, 1987, pp. 209–239.

    Google Scholar 

  2. B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing Company, Reading, Massachusetts, 1972, pp. 592–596.

    Google Scholar 

  3. Reference 2, pp. 565-575.

    Google Scholar 

  4. Reference 2, p. 593.

    Google Scholar 

  5. Reference 2, p. 560.

    Google Scholar 

  6. Reference 2, p. 562.

    Google Scholar 

  7. T. Mishima, Ohm 19, 353 (1932). High coercivity of iron-nickel aluminum alloys was actually discovered in 1931.

    Google Scholar 

  8. D.A. Oliver and J.W. Shedden, Nature 142, 209 (1938).

    Article  Google Scholar 

  9. J.S. van Wieringen and J.G. Rensen, Z. Ang. Phys. 21, 69 (1966).

    Google Scholar 

  10. S. Shtrikman and D. Treves, J. Appl. Phys. 37, 1103 (1966).

    Article  CAS  Google Scholar 

  11. E.F. Makarov, V.A. Povitskii, E.B. Granovskii, and A.A. Fridman, Phys. Status Solidi 24, 45 (1967).

    Article  CAS  Google Scholar 

  12. G. Albanese, G. Asti, and R. Criscuoli, IEEE Trans. Magn. MAG-6, 161 (1970).

    Article  Google Scholar 

  13. V.A. Povitsky, E.B. Granovsky, A. Fridman, E.F. Makarov, and P.P. Pashkov, IEEE Trans. Magn. MAG-6, 215 (1970).

    Article  Google Scholar 

  14. G. Aminoff, Geol. Foren. Stockholm Forhandl. 47, 283 (1925).

    Article  CAS  Google Scholar 

  15. J.J. Went, G.W. Rathenau, E.W. Goiter, and G.W. van Oosterhout, Philips Tech. Rev. 13, 194 (1952).

    CAS  Google Scholar 

  16. In 1967, the number of characterized hexagonal ferrites, each having a different stacking sequence, stood at 60. D.W. Eckart and J.A. Kohn, Z. Krist. 125, 130 (1967).

    Article  CAS  Google Scholar 

  17. X. Obradors, A. Collomb, M. Pernet, D. Samaras, and J.C. Joubert, J. Solid State Chem. 56, 171 (1985).

    Article  CAS  Google Scholar 

  18. J.J. van Loef and P.J.M. Franssen, Phys. Lett. 7, 225 (1963).

    Article  Google Scholar 

  19. W. Zinn, S. Hüfner, M. Kalvius, P. Kienle, and W. Wiedemann, Z. Ang. Phys. 17, 147 (1964).

    CAS  Google Scholar 

  20. J.S. van Wieringen and J.G. Rensen, Z. Ang. Phys. 21, 69 (1966).

    Google Scholar 

  21. J.J. van Loef, Physica 32, 2102 (1966).

    Article  Google Scholar 

  22. J.S. van Wieringen, Philips Tech. Rev. 28, 33 (1967).

    Google Scholar 

  23. W.D. Townes, J.H. Fang, and A.J. Perotta, Z. Krist. 125, 437 (1967).

    Article  CAS  Google Scholar 

  24. J.G. Rensen and J.S. van Wieringen, Solid State Commun. 7, 1139 (1969).

    Article  CAS  Google Scholar 

  25. G. Albanese, G. Asti, and P. Batti, Nuovo Cimento 58B, 467 (1968).

    Google Scholar 

  26. G. Albanese, G. Asti, and P. Batti, Nuovo Cimento 58B, 480 (1968).

    Google Scholar 

  27. G. Albanese, A. Deriu, E. Lucchini, and G. Slokar, Appl. Phys. A 26, 45 (1981), and references therein.

    Article  Google Scholar 

  28. J.G. Rensen, J.A. Schulkes, and J.S. van Wieringen, J. Phys. (Paris), Colloq. 32(C-1), 924 (1971).

    Google Scholar 

  29. V.F. Belov, T.A. Khimich, M.N. Shipko, I.S. Zheludev, E.V. Korneev, and N.S. Ovanesyan, Sov. Phys. JETP 37, 1089 (1973).

    Google Scholar 

  30. E. Kreber, U. Gonser, A. Trautwein, and F.E. Harris, J. Phys. Chem. Solids 36, 263 (1975).

    Article  CAS  Google Scholar 

  31. G.N. Belozerskii and Y.P. Khimich, Sov. Phys. Solid State 17, 871 (1975).

    Google Scholar 

  32. Yu.A. Mamalui, V.P. Romanov, and K.M. Matsievskii, Sov. Phys. Solid State 21, 117 (1979).

    Google Scholar 

  33. N.F. Fushikami, J. Phys. Soc. Japan 20, 760 (1965).

    Article  Google Scholar 

  34. R.H. Vogel and B.J. Evans, J. Magn. Magn. Mater. 13, 294 (1979).

    Article  CAS  Google Scholar 

  35. P.M. Rao, A. Gerard, and F. Grandjean, Phys. Status Sölidi A 54, 529 (1979).

    Article  CAS  Google Scholar 

  36. B.J. Evans, F. Grandjean, A.P. Lilot, R.H. Vogel, and A. Gerard, J. Magn. Magn. Mater. 67, 123 (1987).

    Article  CAS  Google Scholar 

  37. F. Leccabue, G. Albanese, and O.A. Muzio, J. Appl. Phys. 61, 2600 (1987).

    Article  CAS  Google Scholar 

  38. Reference 2, p. 558.

    Google Scholar 

  39. Reference 2, p. 579.

    Google Scholar 

  40. J.J. Becker, IEEE Trans. Magn. MAG-4, 239 (1968).

    Article  Google Scholar 

  41. G. Hoffer and K. Strnat, IEEE Trans. Magn. MAG-2, 487 (1966).

    Article  CAS  Google Scholar 

  42. K.J. Strnat, IEEE Trans. Magn. MAG-6, 182 (1970).

    Article  Google Scholar 

  43. J.H. Wernick and S. Geller, Acta Cryst. 12, 662 (1959).

    Article  CAS  Google Scholar 

  44. K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J.J. Becker, J. Appl. Phys. 38, 1001 (1967).

    Article  CAS  Google Scholar 

  45. I. Nowik, I. Feiner, M. Seh, M. Rakavy, and D.I. Paul, J. Magn. Magn. Mater. 30, 295 (1983).

    Article  CAS  Google Scholar 

  46. I. Nowik, S. Ofer, and J.H. Wernick, Phys. Lett. 20, 232 (1966).

    Article  CAS  Google Scholar 

  47. I. Nowik and J.H. Wernick, Phys. Rev. 140, A131 (1965).

    Article  Google Scholar 

  48. J.J. Croat, J. Appl. Phys. 53, 3161 (1982).

    Article  CAS  Google Scholar 

  49. U. Gonser, H. Ackerman, H.J. Bauer, N. Blaes, S.M. Fries, R. Gaa, and H.G. Wagner, in Industrial Applications of the Mössbauer Effect, G.J. Long and J.G. Stevens, eds., Plenum Press, New York, 1986, pp. 25–61.

    Chapter  Google Scholar 

  50. J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton, J. Appl. Phys. 55, 2078 (1984).

    Article  CAS  Google Scholar 

  51. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).

    Article  CAS  Google Scholar 

  52. G.C. Hadjipanayis, R.C. Hazelton, and K.R. Lawless, Appl. Phys. Lett: 43, 797 (1983).

    Article  CAS  Google Scholar 

  53. D. Givord, H.S. Li, and J.M. Moreau, Solid State Commun. 50, 497 (1984).

    Article  CAS  Google Scholar 

  54. J.F. Herbst, J.J. Croat, F.E. Pinkerton, and W.B. Yelon, Phys. Rev. B 29, 4176 (1984).

    Article  CAS  Google Scholar 

  55. C.B. Shoemaker, D.P. Shoemaker, and R. Fruchart, Acta Cryst. C 40, 1665 (1984).

    Article  Google Scholar 

  56. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, IEEE Trans. Magn. MAG-20, 1584 (1984).

    Article  CAS  Google Scholar 

  57. D. Givord, H.S. Li, and R. Perrier de la Bathie, Solid State Commun. 51, 857 (1984).

    Article  CAS  Google Scholar 

  58. Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, and M. Sagawa, Appl. Phys. Lett. 46, 308 (1985).

    Article  CAS  Google Scholar 

  59. Y.-C. Yang, D.E. Tharp, O.A. Pringle, G.J. Long, and W.J. James, J. Appl. Phys. 61, 4334 (1987).

    Article  Google Scholar 

  60. J.F. Herbst and W.B. Yelon, J. Appl. Phys. 60, 4224 (1986).

    Article  CAS  Google Scholar 

  61. F.E. Pinkerton and W.R. Dunham, Appl. Phys. Lett. 45, 1248 (1984).

    Article  CAS  Google Scholar 

  62. H. Onodera, Y. Yamaguchi, H. Yamamoto, M. Sagawa, Y. Matsuura, and H. Yamamoto, J. Magn. Magn. Mater. 46, 151 (1984).

    Article  CAS  Google Scholar 

  63. H.M. van Noort, D.B. De Mooij, and K.H.J. Buschow, J. Less-Common Met. 115, 155 (1986).

    Article  Google Scholar 

  64. A.R. Miedema and F. van der Woude, Physica B 100, 145 (1980).

    Article  CAS  Google Scholar 

  65. D. Givord, H.S. Li, and F. Tasset, J. Appl. Phys. 57, 4100 (1985).

    Article  CAS  Google Scholar 

  66. J.F. Herbst, J.J. Croat, and W.B. Yelon, J. Appl. Phys. 57, 4086 (1985).

    Article  CAS  Google Scholar 

  67. R. Fruchart, P. L’Héritier, P. Dalmas de Reotier, D. Fruchart, P. Wolfers, J.M.D. Coey, L.P. Ferreira, R. Guillen, P. Vulliet, and A. Yaouanc, J. Phys. F 17, 483 (1987).

    Article  CAS  Google Scholar 

  68. H. Onodera, A. Fujita, H. Yamamoto, M. Sagawa, and S. Hirosawa, J. Magn. Magn. Mater. 68, 6 (1987).

    Article  CAS  Google Scholar 

  69. F. Grandjean, G.J. Long, D.E. Tharp, O.A. Pringle, and W.J. James, J. Phys. (Paris), Colloq. (in press).

    Google Scholar 

  70. O.A. Pringle, G.J. Long, D.E. Tharp, W.J. James, and Y.-C. Yang, Hyperfine Interactions 40, 437 (1988).

    Article  CAS  Google Scholar 

  71. S.V. Karyagin, Sov. Phys. Solid State 8, 391 (1966).

    Google Scholar 

  72. O.A. Pringle, G.K. Marasinghe, G.J. Long, W.J. James, W.B. Yelon, D. Xie, and F. Grandjean, J. Appl. Phys. 64, 5580 (1988).

    Article  CAS  Google Scholar 

  73. N.C. Koon, M. Abe, E. Callen, B.N. Das, S.H. Liou, A. Martinez, and R. Segnan, J. Magn. Magn. Mater. 54–57, 593 (1986).

    Article  Google Scholar 

  74. K.W.H. Stevens, Proc. Phys. Soc. (London) A 65, 209 (1952).

    Article  Google Scholar 

  75. R.L. Davis, R.K. Day, and J.B. Dunlop, Solid State Commun. 56, 181 (1985).

    Article  CAS  Google Scholar 

  76. W.B. Yelon and J.F. Herbst, J. Appl. Phys. 59, 93 (1986).

    Article  CAS  Google Scholar 

  77. D.C. Price, R.K. Day, and J.B. Dunlop, J. Appl Phys. 59, 3585 (1986).

    Article  CAS  Google Scholar 

  78. Q. Ling, J.M. Cadogan, and J.M.D. Coey, Hyperfine Interactions 28, 655 (1986).

    Article  CAS  Google Scholar 

  79. A. Vasquez, J.M. Friedt, J.P. Sanchez, Ph. L’Héritier, and R. Fruchart, Solid State Commun. 55, 783 (1985).

    Article  CAS  Google Scholar 

  80. A. Vasquez and J.P. Sanchez, J. Less-Common Met. 127, 71 (1987).

    Article  CAS  Google Scholar 

  81. D. Niarchos and A. Simopoulos, Solid State Commun. 59, 669 (1986).

    Article  CAS  Google Scholar 

  82. H. Onodera, H. Yamauchi, M. Yamada, H. Yamamoto, M. Sagawa, and S. Hirosawa, J. Magn. Magn. Mater. 68, 15 (1987).

    Article  CAS  Google Scholar 

  83. S. Yan, J. Hanmin, and J. Mingzhi, paper presented at the International Conference on the Applications of the Mössbauer Effect, Melbourne, Australia, August, 1987.

    Google Scholar 

  84. M. Berthier, M. Boge, G. Czjzek, D. Givord, C. Jeandey, H.S. Li, and J.L. Oddou, J. Magn. Magn. Mater. 54–57, 589 (1986).

    Article  Google Scholar 

  85. P.C.M. Gubbens, A.M. van der Kraan, and K.H.J. Buschow, J. Magn. Magn. Mater. 54–57, 591 (1986).

    Article  Google Scholar 

  86. K.H.J. Buschow, J.W.C. de Vries, and R.C. Thiel, Physica B 132, 13 (1985).

    Article  CAS  Google Scholar 

  87. K.H.J. Buschow, J.W.C. de Vries, and R.C. Thiel, J. Phys. F 15, L93 (1985).

    Article  CAS  Google Scholar 

  88. M. Boge, G. Czjzek, D. Givord, C. Jeandey, H.S. Li, and J.L. Oddou, J. Phys. F 16, L67 (1986).

    Article  CAS  Google Scholar 

  89. D.E. Tharp, Y.-C. Yang, O.A. Pringle, G.J. Long, and W.J. James, J. Appl. Phys. 61, 4334 (1987).

    Article  CAS  Google Scholar 

  90. H.M. van Noort and K.H.J. Buschow, J. Less-Common Met. 113, L9 (1985).

    Article  Google Scholar 

  91. Y.-C. Yang, D.E. Tharp, G.J. Long, O.A. Pringle, and W.J. James, J. Appl. Phys. 61, 4343 (1987).

    Article  CAS  Google Scholar 

  92. CD. Fuerst, G.P. Meisner, F.E. Pinkerton, and W.B. Yelon, J. Less-Common Met. 133, 255 (1987).

    Article  CAS  Google Scholar 

  93. A.T. Pedziwiatr and W.E. Wallace, J. Less-Common Met. 126, 41 (1986).

    Article  CAS  Google Scholar 

  94. G. Wiesinger and G. Hilscher, Hyperfine Interactions 40, 235 (1988).

    Article  CAS  Google Scholar 

  95. J.M. Cadogan and J.M.D. Coey, Appl. Phys. Lett. 48, 442 (1986).

    Article  CAS  Google Scholar 

  96. J.M.D. Coey, A. Yaouanc, and D. Fruchart, Solid State Commun. 58, 413 (1986).

    Article  CAS  Google Scholar 

  97. J.M. Friedt, A. Vasquez, J.P. Sanchez, P. L’Héritier, and R. Fruchart, J. Phys. F 16, 651 (1986).

    Article  CAS  Google Scholar 

  98. J.M. Friedt, A. Vasquez, J.P. Sanchez, Ph. L’Héritier, and R. Fruchart, Hyperfine Interactions 28, 611 (1986).

    Article  CAS  Google Scholar 

  99. J.P. Sanchez, J.M. Friedt, A. Vasquez, Ph. L’Héritier, and R. Fruchart, Solid State Commun. 57, 309 (1986).

    Article  CAS  Google Scholar 

  100. J.R. Harris, J. Less-Common Met. 131, 245 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pringle, O.A., Long, G.J. (1989). Mössbauer Effect Studies of Hard Magnetic Materials. In: Long, G.J., Grandjean, F. (eds) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2289-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2289-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2291-5

  • Online ISBN: 978-1-4899-2289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics