Skip to main content

Escape Reflexes in Earthworms and Other Annelids

  • Chapter
Neural Mechanisms of Startle Behavior

Abstract

Escape or startle reflexes are characteristically seen in many representatives of the Phylum Annelida (segmented worms), a group that comprises the earthworms, aquatic oligochaetes, leeches, and marine bristle or polychaete worms. From the standpoint of defense, the escape reflex represents one of the most important components of a worm’s repertoire of locomotory behavior that, depending on the species, may also include undulating swimming or peristaltic creeping movements. The underlying control and coordination for all of these locomotory movements are carried out by the worm’s central nervous system, which consists of a dorsal brain in anterior segments and a ventral nerve cord, the latter being composed of a chain of segmentally arranged ganglia joined by longitudinal connectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W. R., 1951, The nervous system of the earthworm Megascolex, J. Comp. Neurol. 94: 57–103.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, E. A., 1895, Conjugation of the brandling, Am. Nat. 29: 1021–1027.

    Article  Google Scholar 

  • Bagnoli, P., BruneIli, M., and Magni, F., 1972, A fast conducting pathway in the central nervous system of the leech Hirudo medicinalis, Arch. Ital. Biol. 110: 35–51.

    PubMed  CAS  Google Scholar 

  • Bagnoli, P., Brunelli, M., and Magni, F., 1973, Afferent connections to the fast conduction pathway in the central nervous system of the leech Hirudo medicinalis, Arch. Ital. Biol. 111: 58–75.

    PubMed  CAS  Google Scholar 

  • Bagnoli, P., Brunelli, M., Magni, F., and Pellegrino, M., 1975a, Suprasegmental inputs to the fast conducting system in the central nervous system of Hirudo medicinalis, Arch. Ital. Biol. 112: 307–329.

    Google Scholar 

  • Bagnoli, P., Brunelli, M., and Magni, F., 1975b, The neuron of fast conducting system in Hirudo medicinalis: Identification and synaptic connections with primary afferent neurons, Arch. Ital. Biol. 113: 21–43.

    PubMed  CAS  Google Scholar 

  • Baiter, R. J., Drewes, C. D., and McFall, J. L., 1980, In vivo conduction properties of regenerating giant nerve fibers in earthworms, J. Exp. Zool. 211: 395–405.

    Google Scholar 

  • Belardetti, F., Biondi, C., Colombaioni, L., Brunelli, M., and Trevisani, A., 1982, Role of serotonin and cyclic AMP on facilitation of the fast conducting system activity in the leech Hirudo medicinalis, Brain Res. 246: 89–103.

    Article  PubMed  CAS  Google Scholar 

  • Beleslin, B. B., 1982, Membrane physiology of excitable cells in annelids, in: Membrane Physiology of Invertebrates ( R. B. Podesta, ed.), Marcel Dekker, New York, pp. 199–260.

    Google Scholar 

  • Bennett, M. V. L., 1977, Electrical transmission: A functional analysis and comparison to chemical transmission, in: Handbook of Physiology, Sect. 1, Vol. I, Part 1 ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 357–416.

    Google Scholar 

  • Berry, M. S., and Pentreath, V. W., 1977, The integrative properties of electrotonic synapses, Comp. Biochem. Physiol. 57A: 289–295.

    Article  Google Scholar 

  • Birse, S. C., and Bittner, G. D., 1976, Regeneration of giant axons in earthworms, Brain Res. 113: 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Birse, S. C., and Bittner, G. D., 1981, Regeneration of earthworm giant axons following transection or ablation, J. Neurophysiol. 45: 724–742.

    PubMed  CAS  Google Scholar 

  • Boyard, J. F., 1918, The function of the giant fibers in earthworms, Univ. Calif. Publ. Zool. 18: 135–144

    Google Scholar 

  • Brink, P., and Barr, L., 1977, The resistance of the septum of the median giant axon of the earthworm, J. Gen. Physiol. 69: 517–536.

    Article  PubMed  CAS  Google Scholar 

  • Brink, P. R., and Dewey, M. M., 1978, Nexal membrane permeability to anions, J. Gen. Physiol. 72: 67–86.

    Article  PubMed  CAS  Google Scholar 

  • Brink, P. R., and Dewey, M. M., 1980, Evidence for fixed charge in the nexus, Nature 285: 101–102.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T. H., 1945a, Functional organization of the giant fiber system of Lumbricus, J. Neurophysiol. 8: 55–71.

    Google Scholar 

  • Bullock, T. H., 1945b, Organization of the giant nerve fiber system in Neanthes virens, Biol. Bull. (Woods Hole) 89: 185–186.

    Google Scholar 

  • Bullock, T. H., 1948, Physiological mapping of giant nerve fiber systems in polychaete annelids, Physiol. Comp. Oecol. 1: 1–14.

    Google Scholar 

  • Bullock, T. H., 1951, Facilitation of conduction rate in nerve fibers, J. Physiol. (London) 114: 89–97.

    CAS  Google Scholar 

  • Bullock, T. H., 1952, The invertebrate neuron junction, Cold Spring Harbor Symp. Quant. Biol. 17: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T. H., 1953, Properties of some natural and quasi-artificial synapses in polychaetes, J. Comp. Neurol. 98: 37–68.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T. H., and Horridge, G. A., 1965, Structure and Function in the Nervous Systems of Invertebrates, Vol. 1, W. H. Freeman, San Francisco.

    Google Scholar 

  • Bullock, T. H., and Turner, R. S., 1950, Events associated with conduction failure in nerve fibers, J. Cell. Comp. Physiol. 36: 59–81.

    Article  CAS  Google Scholar 

  • Carbonetto, S., and Muller, K. J., 1977, A regenerating neurone in the leech can form an electrical synapse on its severed axon segment, Nature 267: 450–452.

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall, R. E., 1965, A fine structural analysis of the ventral nerve cord and associated sheath of Lumbricus terrestris, J. Comp. Neurol. 125: 393–438.

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall, R. E., and Fawcett, D. W., 1964, The fine structure of the central nervous system of the leech Hirudo medicinalis, J. Neurophysiol. 27: 229–289.

    PubMed  CAS  Google Scholar 

  • De Robertis, E. D. P., and Bennett, H. S., 1956, Some observations on the fine structure of the giant nerve fibres of the earthworm, in: Proceedings of the Third International Conference on Electron Microscopy (R. Ross, ed.), Royal Microscopical Society, London pp. 431–436.

    Google Scholar 

  • Dewey, M., and Barr, L., 1964, A study of the structure and distribution of the nexus, J. Cell Biol. 23: 553–585.

    Article  PubMed  CAS  Google Scholar 

  • Dierolf, B. M., and Brink, P. R., 1973, Effects of temperature acclimation on cable constants of the earthworm median giant axon, Comp. Biochem. Physiol. 44: 401–406.

    Article  Google Scholar 

  • Dorsett, D. A., 1964, The sensory and motor innervation of Nereis, Proc. R. Soc. (London) Ser. B 159: 652–667.

    Article  Google Scholar 

  • Dorsett, D. A., 1978, Organization of the nerve cord, in: Physiology of Annelids ( P. J. Mill, ed.), Academic Press, New York, pp. 115–160.

    Google Scholar 

  • Dorsett, D. A., 1980, Design and function of giant fibre systems, Trends Neurosci. 3: 205–208.

    Article  Google Scholar 

  • Drewes, C. D., and Marty, B. L., 1982, Giant nerve fiber function in regenerating tail segments of earthworms, Soc. Neurosci. Abstr. 8: 869.

    Google Scholar 

  • Drewes, C. D., and McFall, J. L., 1980, Longitudinal variations in the efficacy of lateral giant fiber to giant motor neuron transmission in intact earthworms, Comp. Biochem. Physiol. 66A: 315–321.

    Article  Google Scholar 

  • Drewes, C. D., and Pax, R. A., 1974, Neuromuscular physiology of the longitudinal muscle of the earthworm, Lumbricus terrestris II. Patterns of innervation, J. Exp. Biol. 60: 453–467.

    PubMed  CAS  Google Scholar 

  • Drewes, C. D., Landa, K. B., and McFall, J. L., 1978, Giant nerve fibre activity in intact, freely moving earthworms, J. Exp. Biol. 72: 217–227.

    PubMed  CAS  Google Scholar 

  • Drewes, C. D., McFall, J. L., Vining, E. P., and Pallas, S. L., 1980, Longitudinal variations in MGF-mediated giant motor neuron activity and rapid escape shortening in intact earthworms, Comp. Biochem. Physiol. 67A: 659–665.

    Article  Google Scholar 

  • Drewes, C. D., Callahan, C. A., Fender, W. M., 1983, Species specificity of giant nerve fiber conduction velocity in oligochaetes, Can. J. Zool. 61: 2688–2694.

    Article  Google Scholar 

  • Dyal, J. A., 1973, Behavior modification in annelids, in: Invertebrate Learning, Vol. 1 ( W. C. Corning, J. A. Dyal, and A. O. D. Willows, eds. ), Plenum Press,New York, pp. 225–290.

    Chapter  Google Scholar 

  • Eccles, J. C., Granit, R., and Young, J. Z., 1933, Impulses in the giant nerve fibers of earthworms, J. Physiol. (London) 77: 23–24.

    Google Scholar 

  • Fernandez, J., 1978, Structure of the leech nerve cord: Distribution of neurons and organization of fiber pathways, J. Comp. Neurol. 180: 165–191.

    Article  PubMed  CAS  Google Scholar 

  • Frank, E., Jansen, J. K. S., and Rinvik, E., 1975, A multisomatic axon in the central nervous system of the leech, J. Comp. Neurol. 159: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Friesen, W. O., 1981, Physiology of water motion detection in the medicinal leech, J. Exp. Biol. 92: 255–275.

    PubMed  CAS  Google Scholar 

  • Gardner, C. R., 1976, The neuronal control of locomotion in the earthworm, Biol. Rev. Camb. Philos. Soc. 51: 25–52.

    Article  PubMed  CAS  Google Scholar 

  • Gardner-Medwin, A. R., Jansen, J. K. S., and Taxt, T., 1973, The “giant axon” of the leech, Acta Physiol. Scand. 87: 30A - 31A.

    Google Scholar 

  • Gates, G. E., 1950, Regeneration in an earthworm, Eisenia foetida (Savigny) 1826. H. Posterior regeneration, Biol. Bull. (Woods Hole) 98: 36–45.

    Article  CAS  Google Scholar 

  • Goldman, L., 1963, The effects of stretch on impulse propagation in the median giant fiber of Lumbricus, J. Cell. Comp. Physiol. 62: 105–112.

    Article  CAS  Google Scholar 

  • Goldman, L., 1964, Effects of stretch on cable and spike parameters of single nerve fibres; some implications for the theory of impulse propagation, J. Physiol. (London) 173: 424–444.

    Google Scholar 

  • Günther, J., 1970, Zur Organisation der exteroceptiven Afferenzen in den Korpersegmenten des Regenwurms, Verh. Dtsch. Zool. Ges. 64: 261–265.

    Google Scholar 

  • Günther, J., 1971a, Der cytologische Aufbau der dorsalen Riesenfasern von Lumbricus terrestris L., Z. Wiss. Zool. 183: 51–70.

    Google Scholar 

  • Günther, J., 1971b, Mikroanatomie des Bauchmarks von Lumbricus terrestris L. (Annelida, Oligochaeta), Z. Morphol. Tiere 70: 141–182.

    Google Scholar 

  • Günther, J., 1972, Giant motor neurons in the earthworm, Comp. Biochem. Physiol. 42: 967–974.

    Article  Google Scholar 

  • Günther, J., 1973a, A new type of “node” in the myelin sheath of an invertebrate nerve fiber, Experientia 29: 1263–1265.

    Article  PubMed  Google Scholar 

  • Günther, J., 1973b, Overlapping sensory fields of the giant fiber systems in the earthworm, Naturwissenschaften 11: 521–522.

    Article  Google Scholar 

  • Günther, J., 1975, Neuronal syncytia in giant fibres of earthworms, J. Neurocytol. 4: 55–62.

    Article  PubMed  Google Scholar 

  • Günther, J., 1976, Impulse conduction in the myelinated giant fibers of the earthworm Structure and function of the dorsal nodes in the median giant fiber, J. Comp. Neurol. 168: 505–531.

    Article  PubMed  Google Scholar 

  • Günther, J., and Schürmann, F. W., 1973, Zur Feinstruktur des dorsalen Riesenfasersystems im Bauchmark des Regenwurms II. Synaptische Beziehung der proximalen Riesenfaserkollateralen, Z. Zellforsch, Mikrosk. Anat. 139: 369–396.

    Article  Google Scholar 

  • Günther, J., and Walther, J. B., 1971, Funktionelle Anatomie der dorsalen Riesenfaser-Systeme von Lumbricus terrestris L., Z. Morphol. Tiere 70: 253–280.

    Article  Google Scholar 

  • Gwilliam, G. F., 1969, Electrical response to photic stimulation in the eyes and nervous system of nereid polychaetes, Biol. Bull. (Woods Hole) 136: 385–397.

    Article  CAS  Google Scholar 

  • Hagiwara, S., Morita, H., and Naka, K., 1964, Transmission through distributed synapses between two giant axons of a sabellid worm, Comp. Biochem. Physiol. 13: 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. R., 1921, Regeneration in the annelid nerve cord, J. Comp. Neurol. 33: 163–177.

    Article  Google Scholar 

  • Hama, K., 1959, Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia foetida, J. Biophys. Biochem. Cytol. 6: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Hodes, R., 1953, Linear relationship between fiber diameter and velocity in giant axon of squid, J. Neurophysiol. 16: 145–154.

    PubMed  CAS  Google Scholar 

  • Horridge, G. A., 1959, Analysis of the rapid responses of Nereis and Harmothoe (Annelida), Proc. R. Soc. (London) Ser. B 150: 245–262.

    Article  CAS  Google Scholar 

  • Horridge, G. A., 1968, Interneurons, W. H. Freeman, San Francisco.

    Google Scholar 

  • Hulsebosch, C. E., and Bittner, G. D., 1981, Regeneration of axons and nerve cell bodies in the CNS of annelids, J. Comp. Neurol. 198: 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, L. H., 1940, Aspects of regeneration in annelids, Am. Nat. 74: 513–527.

    Article  Google Scholar 

  • Jamieson, B. G. M., 1981, The Ultrastructure of the Oligochaeta, Academic Press, New York.

    Google Scholar 

  • Kao, C. Y., and Grundfest, H. J., 1957, Postsynaptic electrogenesis in septate giant axons, J. Neurophysiol. 20: 553–573.

    PubMed  CAS  Google Scholar 

  • Kennedy, D., 1966, The comparative physiology of invertebrate central neurons, in: Advances in Comparative Physiology and Biochemistry ( O. Lowenstein, ed.), Academic Press, New York, pp. 117–184.

    Google Scholar 

  • Kensler, R. W., Brink, P. R., and Dewey, M. M., 1979, The septum of the lateral axon of the earthworm: A thin section and freeze-fracture study, J. Neurocytol. 8: 565–590.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, A. P., 1981, The nervous system of the glossiphoniid leech Haementeria ghillianii II. Synaptic pathways controlling body wall shortening, J. Comp. Physiol. 144: 449–457.

    Article  Google Scholar 

  • Kramer, A. P., and Goldman, J. R., 1981, The nervous system of the glossiphoniid leech Haementeria ghilianii I. Identification of neurons, J. Comp. Physiol. 144: 435–448.

    Article  Google Scholar 

  • Krasne, F. B., 1965, Escape from recurring tactile stimulation in Branchiomma vesiculosum, J. Exp. Biol. 42: 307–322.

    PubMed  CAS  Google Scholar 

  • Kretz, J. R., Stent, G. S., and Kristan, W. B., 1976, Photosensory input pathways in the medicinal leech, J. Comp. Physiol. 106: 1–37.

    Article  Google Scholar 

  • Kristan, W. B., McGirr, S. J., and Simpson, G. V., 1982, Behavioral and mechanosensory neurone responses to skin stimulation in leeches, J. Exp. Biol. 96: 143–160.

    Google Scholar 

  • Kupfermann, I., and Weiss, K. R., 1978, The command neuron concept, Behay. Brain Sci. 1: 3–39.

    Article  Google Scholar 

  • Lagerspetz, K. Y. H., and Talo, A., 1967, Temperature acclimation of the functional parameters of the giant nerve fibers in Lumbricus terrestris, J. Exp. Biol. 47: 471–480.

    PubMed  CAS  Google Scholar 

  • Laverack, M. S., 1963, The Physiology of Earthworms, McMillan, New York.

    Google Scholar 

  • Laverack, M. S., 1969, Mechanoreceptors, photoreceptors, and rapid conduction pathways in the leech, Hirudo medicinalis, J. Exp. Biol. 50: 129–140.

    PubMed  CAS  Google Scholar 

  • Magni, F., and Pellegrino, M., 1975, Nerve cord shortening induced by activation of the fast conducting system in the leech, Brain Res. 90: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Magni, F., and Pellegrino, M., 1978a, Neural mechanisms underlying the segmental and generalized cord shortening reflexes in the leech, J. Comp. Physiol. 124: 339–351.

    Article  Google Scholar 

  • Magni, F., and Pellegrino, M., 1978b, Patterns of activity and the effects of activation of the fast conducting system on the behavior of unrestrained leeches, J. Exp. Biol. 76: 123–135.

    PubMed  CAS  Google Scholar 

  • McFall, J. L., Landa, K. B., and Drewes, C. D., 1977, Parameters of giant fiber conduction in intact, freely moving earthworms, Am. Zool. 17: 105.

    Google Scholar 

  • Mangum, C. P., and Passano, L. M., 1964, Giant fibers in madanid polychaetes, Nature 201: 210–211.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, D., Treherne, J. E., Lane, N.J., Harrison, J. B., and Langley, C. K., 1980, Electrical interactions between the giant axons of a polychaete worm (Sabella penicillus L.), J. Exp. Biol. 84: 119–136.

    PubMed  Google Scholar 

  • Mill, P. J., 1975, The organization of the nervous system in annelids, in: “Simple” Nervous Systems ( P. N. R. Usherwood and D. R. Newth, eds.), Edward Arnold, London, pp. 211–264.

    Google Scholar 

  • Mill, P. J., 1982, Recent developments in earthworm neurobiology, Comp. Biochem. Physiol. 73A: 641–661.

    Article  Google Scholar 

  • Mistick, D., 1974, Rohde’s fibre: A septate axon in the leech, Brain Res. 74: 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Moment, G. B., 1979, Growth, posterior regeneration and segment number in Eisenia foetida, Megadrilogica 3: 167–175.

    Google Scholar 

  • Moment, G. B., and Johnson, J. E. Jr., 1979, The structure and function of external sense organs in newly hatched and mature earthworms, J. Morphol. 159: 1–16.

    Article  Google Scholar 

  • Moore, M. J., 1979, The rapid escape response of the earthworm Lumbricus terrestris L.: Overlapping sensory fields of the median and lateral giant fibers, J. Exp. Biol. 83: 231–238.

    Google Scholar 

  • Morgan, T. H., 1899, A confirmation of Spallanzani’s discovery of an earthworm regenerating a tail in place of a head, Anat. Anz. 15: 407–410.

    Google Scholar 

  • Morita, H., and Tateda, H., 1952, Giant nerve fiber and its functional organization in the earthworm, Mem. Fac. Sci. Kyushu Univ. Ser. E. Biol. 1: 89–100.

    Google Scholar 

  • Muller, K. J., 1979, Synapses between neurones in the central nervous system of the leech, Biol. Rev. Camb. Philos. Soc. 54: 99–134.

    Article  PubMed  CAS  Google Scholar 

  • Muller, K. J., and Scott, S. A., 1981, Transmission at a “direct” electrical connexion mediated by an interneurone in the leech, J. Physiol. (London) 311: 565–583.

    CAS  Google Scholar 

  • Mulloney, B., 1970, Structure of the giant fibers of earthworms, Science 168: 994–996.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, J. G., and Purves, D., 1970, Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech, J. Physiol (London) 209: 647–667.

    CAS  Google Scholar 

  • Nicol, J. A. C., 1948a, The function of the giant axon of Myxicola infundibulum, Can. J. Res. 26: 212–222.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, J. A. C., 1948b, The giant axons of annelids, Q. Rev. Biol. 23: 291–319.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, J. A. C., 1948c, The giant nerve-fibres in the central nervous system of Myxicola (Polychaeta, Sabellidae), Q. J. Microsc. Sci. 89: 1–45.

    PubMed  CAS  Google Scholar 

  • Nicol, J. A. C., 1950, Responses of Branchiomma vesiculosum (Montagu) to photic stimulation, J. Mar. Biol. Assoc. U. K. 29: 303–320.

    Article  Google Scholar 

  • Nicol, J. A. C., Smyth, C. N., and Whitteridge, D., 1947, Conduction velocity in relation to axon diameter in Myxicola infundibulum, in: XVII International Physiology Congress. Abstracts of Communications, Oxford, pp. 243–244.

    Google Scholar 

  • Oesterle, D., and Barth, F. G., 1973, Zur Feinstruktur einer elektrischen Synapse. Die septum der dorsalen Riesenfasern von Regenwurmern (Lumbricus terrestris, Eisenia foetida), Z. Zellforsch, Mikrosk. Anat. 136: 139–152.

    Article  CAS  Google Scholar 

  • Oesterle, D., and Barth, F. G., 1981, Dorsal giant fiber septum of earthworm: Fine structural details and further evidence for gap junctions, Tissue Cell 13: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • O’Gara, B., Vining, E. P., and Drewes, C. D., 1982, Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. I. Functional development of giant nerve fibers during embryonic and postembryonic periods, J. Neurobiol. 13: 337–353.

    Article  PubMed  Google Scholar 

  • Ogawa, F., 1939, The nervous system of earthworm (Pheretima communissima) in different ages, Sci. Rep. Tohoku Univ. Fourth Ser. (Biol.) 13: 395–488.

    Google Scholar 

  • Pallas, S. L., and Drewes, C. D., 1981, The rapid tail flattening component of MGF-mediated escape behavior in the earthworm, Lumbricus terrestris, Comp. Biochem. Physiol. 70A: 57–64.

    Article  Google Scholar 

  • Prosser, C. L., 1933, Correlation between development of behavior and neuromuscular differentiation in embryos of Eisenia foetida, Say., J. Comp. Neurol. 58: 603–641.

    Article  Google Scholar 

  • Prosser, C. L., 1934, The nervous system of the earthworm, Q. Rev. Biol. 9: 181–200.

    Article  Google Scholar 

  • Roberts, M. B. V., 1960, Giant fibre reflex of the earthworm, Nature 186: 167.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. B. V., 1962a, The giant fibre reflex of the earthworm Lumbricus terrestris L. I. The rapid response, J. Exp. Biol. 39: 219–227.

    Google Scholar 

  • Roberts, M. B. V., 1962b, The giant fibre reflex of the earthworm Lumbricus terrestris L II Fatigue, J. Exp. Biol. 39: 229–237.

    Google Scholar 

  • Roberts, M. B. V., 1962c, The rapid response of Myxicola infundibulum (Grube), J. Mar. Biol. Assoc. U.K. 42: 527–535.

    Article  Google Scholar 

  • Roberts, M. B. V., 1966, Facilitation in the rapid response of earthworms Lumbricus terrestris L., J. Exp. Biol. 45: 141–150.

    PubMed  CAS  Google Scholar 

  • Rushton, W. A. H., 1945a, Action potentials from the isolated nerve cord of the earthworm, Proc. R. Soc. (London) Ser. B 132: 423–437.

    Article  Google Scholar 

  • Rushton, W. A. H., 1945b, Motor responses from giant fibers in earthworms, Nature 156: 109–110.

    Article  Google Scholar 

  • Rushton, W. A. H., 1946, Reflex conduction in the giant fibers of the earthworm, Proc. R. Soc. (London) Ser. B. 133: 109–120.

    Article  CAS  Google Scholar 

  • Rushton, W. A. H., and Barlow, H. B., 1943, Single fibre response from an intact animal, Nature 152: 597–598.

    Article  Google Scholar 

  • Sawyer, R. T., 1981, Leech biology and behavior, in: Neurobiology of the Leech ( K. J. Muller, J. G. Nicholls, and G. S. Stent, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 7–26.

    Google Scholar 

  • Schürmann, F. W., and Günther, J., 1973, Zur Feinstruktur des dorsalen Riesenfasersystems in Bauchmark des Regenwurms. 1. Die Somata der Riesenfasern, Z. Zellforsch. Mikrosk. Anat. 139: 351–368.

    Article  PubMed  Google Scholar 

  • Seymour, M. K., 1972, The giant nerve fibres of Arenicola marina (L.), Comp. Biochem. Physiol. 41: 457–464.

    Article  Google Scholar 

  • Smith, J. E., 1957, The nervous anatomy of the body segments of nereid polychaetes, Philos. Trans. R. Soc. London Ser. B 240: 135–196.

    Article  Google Scholar 

  • Smith, P. H., and Mittenthal, J. E., 1980, Intersegmental variation of afferent pathways to giant interneurons of the earthworm, Lumbricus terrestris L., J. Comp. Physiol. A, 140: 351–353.

    Article  Google Scholar 

  • Stephenson, J., 1930, The Oligochaeta, Clarendon Press, Oxford.

    Google Scholar 

  • Stough, H. B., 1926, Giant nerve fibres of the earthworm, J. Comp. Neurol. 40: 409–463.

    Article  Google Scholar 

  • Stough, H. B., 1930, Polarization of the giant fibres of the earthworm, J. Comp. Neurol. 50: 217–229.

    Article  Google Scholar 

  • Stuart, A. E., 1970, Physiological and morphological properties of motoneurones in the central nervous system of the leech, J. Physiol. (London) 209: 627–646.

    CAS  Google Scholar 

  • Studnitz, G. von, 1937, Der Zuckreflex der Regenwurmer, Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere 38: 127–158.

    Google Scholar 

  • Taylor, G. W., 1940, The optical properties of the earthworm giant fiber sheath as related to fiber size, J. Cell. Comp. Physiol. 15: 363–371.

    Article  CAS  Google Scholar 

  • Ten Cate, J., 1938, Sur la fonction des neurochordes de la chaine ventrale du ver de terre (Lumbricus terrestris), Arch. Neerl. Physiol. 23: 136–140.

    Google Scholar 

  • Vining, E. P., and Drewes, C. D., 1982, Changing conduction properties of earthworm giant fibers during regeneration, Soc. Neurosci. Abstr. 8: 868.

    Google Scholar 

  • Vining, E. P., O’Gara, B., and Drewes, C. D., 1982, Electrophysiological correlates of rapid escape reflexes in intact earthworms Eisenia foetida II Effects of food deprivation on the functional development of giant nerve fibers, J. Neurobiol. 13: 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J., Besso, J. A., Boldosser, W. G. and Parsons, R. L., 1972, The fine structure of the nerve cord of Myxicola infundibulum (Annelida, Polychaeta), Z. Zellforsch. 131: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J., Besso, J. A., Boldosser, W. G., and Parsons, R. L., 1973, Morphology of the escape system in Myxicola infundibulum, Anat. Rec. 175: 468.

    Google Scholar 

  • Wilson, D. M., 1961, The connections between giant fibers of earthworms, Comp. Biochem. Physiol. 3: 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Yolton, L. W., 1923, The effects of cutting the giant fibers in the earthworm, Eisenia foetida (Say.), Proc. Natl. Acad. Sci. U.S.A. 9: 383–385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drewes, C.D. (1984). Escape Reflexes in Earthworms and Other Annelids. In: Eaton, R.C. (eds) Neural Mechanisms of Startle Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2286-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2286-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2288-5

  • Online ISBN: 978-1-4899-2286-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics