Skip to main content

The Size of Sodium Dodecyl Sulfate Micelles with Various Additives: a Fluorescence Quenching Study

  • Chapter
Surfactants in Solution

Abstract

Fluorescence quenching methods for the determination of micelle aggregation numbers have been critically evaluated recently. It was concluded that the simple, static fluorescence quenching method can be used with confidence for small micelles if it is complemented by some time-resolved measurements. The probe/quencher pair Ru(bpy)\( _3^{2 + } \) / 9-methylanthracene has been studied extensively in SDS-micelies. Studies at varying salt concentration suggest this pair to be useful for micelles up to an aggregation number of about 130.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Stilbs and M. E. Moseley, Chem. Scripta, 15, 176 (1980).

    CAS  Google Scholar 

  2. P. Stilbs, J. Colloid Interface Sci., 87, 385 (1982).

    Article  CAS  Google Scholar 

  3. P. Stilbs, J. Colloid Interface Sci., 80, 608 (1981).

    Article  CAS  Google Scholar 

  4. N. J. Turro and A. Yekta, J. Am. Chem. Soc., 100, 5951 (1978).

    Article  CAS  Google Scholar 

  5. M. Almgren and J.-E. Löfroth, J. Colloid Interface Sci., 81, 486 (1981).

    Article  CAS  Google Scholar 

  6. M. Almgren and J.-E. Löfroth, J. Chem. Phys., 76, 2734 (1982).

    Article  CAS  Google Scholar 

  7. S. Atik, M. Nam, and L. Singer, Chem. Phys. Lett., 67, 75 (1979).

    Article  CAS  Google Scholar 

  8. P. Lianos and R. Zana, J. Colloid Interface Sci., 84, 100 (1981).

    Article  CAS  Google Scholar 

  9. P. Lianos and R. Zana, J. Phys. Chem., 84, 3399 (1980).

    Article  Google Scholar 

  10. P. P. Infelta, Chem. Phys. Lett., 61, 88 (1979).

    Article  CAS  Google Scholar 

  11. N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem., 80, 1075 (1976)

    Article  CAS  Google Scholar 

  12. P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and M. C. Carey, J. Phys. Chem., 84, 1044 (1980).

    Article  CAS  Google Scholar 

  13. M. Almgren and S. Swarup, J. Phys. Chem., 86, 4212 (1982).

    Article  CAS  Google Scholar 

  14. H. F. Huisman, Proc. Kon. Ned. Akad. Wetenseh., B67, 367 (1964).

    Google Scholar 

  15. D. A. Doughty, J. Phys. Chem., 83, 2621 (1979).

    Article  CAS  Google Scholar 

  16. J. P. Kratohvil, J. Colloid Interface Sci., 75, 271 (1980).

    Article  CAS  Google Scholar 

  17. M. van der Auweraer, C. Dederen, C. Palmans-Windels and F. C. DeSchryver, J. Am. Chem. Soc., 104, 1800 (1982).

    Article  Google Scholar 

  18. M. Almgren and S. Swarup, J. Colloid Interface Sci., (in press).

    Google Scholar 

  19. M. Almgren and S. Swarup, J. Phys. Chem., (in press).

    Google Scholar 

  20. H. N. Singh and S. Swarup, Bull. Chem. Soc. Japan, 51, 1534 (1978).

    Article  CAS  Google Scholar 

  21. H. N. Singh, S. Swarup and S. M. Saleem, J. Colloid Interface Sci., 68, 128 (1979).

    Article  CAS  Google Scholar 

  22. P. Lianos and R. Zana, J. Phys Chem., 86, 1019 (1982).

    Article  CAS  Google Scholar 

  23. B. Jönsson, Ph.D. Thesis, Lund, 1981.

    Google Scholar 

  24. B. Jönsson and H. Wennerström, J. Colloid Interface Sci., 80, 482 (1981).

    Article  Google Scholar 

  25. G. Gunnarsson, B. Jönsson and H. Wennerström, J. Phys. Chem., 84, 3114 (1980).

    Article  CAS  Google Scholar 

  26. C. Tanford, “The Hydrophobie Effect”, Wiley, New York, 1973.

    Google Scholar 

  27. H. V. Tartar, J. Phys. Chem., 59, 1195 (1955).

    Article  CAS  Google Scholar 

  28. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976).

    Article  Google Scholar 

  29. G. S. Hartley, in “Micellization, Solubilization, and Microemulsions”, K. L. Mittal, Editor, Vol. 1, p. 23, Plenum Press, New York, 1977.

    Chapter  Google Scholar 

  30. E. A. G. Aniansson, J. Phys. Chem., 82, 2805 (1978).

    Article  CAS  Google Scholar 

  31. P. Mukerjee and K. J. Mysels, “Critical Micelle Concentration of Aqueous Surfactant Systems”, National Bureau of Standards, Washington, D. C., 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Almgren, M., Swarup, S. (1984). The Size of Sodium Dodecyl Sulfate Micelles with Various Additives: a Fluorescence Quenching Study. In: Mittal, K.L., Lindman, B. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2280-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2280-9_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2282-3

  • Online ISBN: 978-1-4899-2280-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics