Skip to main content

Spark Ignition: Its Physics and Effect on the Internal Combustion Engine

  • Chapter
Fuel Economy

Abstract

The interest in a better understanding of the processes involved in ignition and self-sustained flame propagation is as old as the internal combustion engine itself. In order to gain a better insight into these processes, the main efforts have been concentrated on experiments in the very engine aiming at a direct and quick success. This, however, also presented its major drawback. The complexity of the mutually dependent influences of the large number of different operation parameters of the real engine prevented any significant breakthrough in the past. Too much room had still to be left by this approach for speculations and interpretations due to serious lacks of accessible information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Penner, S. S., and Mullins, B. P., “Explosions, Detonations, Flammability and Ignition,” Pergamon Press, London (1959).

    Google Scholar 

  2. Lewis, B., and von Elbe, G., “Combustion, Flames and Explosions of Gases,” 2nd ed., Academic Press, New York (1961).

    Google Scholar 

  3. Müller, H., Rhode, S., and Klink, G., “Gemischbildung, Verbrennung und Abgas im Otto-motor,” Fachbibliographie mit Referaten bis 1965, Universität Braunschweig, Braunschweig, (1972).

    Google Scholar 

  4. Conzelmann, G., “Über die Entflammung des Kraftstoffluftgemisches im Ottomotor,” Bosch Technische Berichte, 1, 15–20 (1969).

    Google Scholar 

  5. Albrecht, H., Bloss, W. H., Herden, W., Maly, R., Saggau, B., and Wagner, E., “New Aspects on Spark Ignition,” SAE paper 770853 (1977).

    Google Scholar 

  6. Albrecht, H., Maly, R., Saggau, B., and Wagner, E., “Neue Erkenntnisse über elektrische Zündfunken und ihre Eignung zur Entflammung brennbarer Gemische, 1. Teil,” Automobil Industrie, 4/77, 45–50 (1977).

    Google Scholar 

  7. Herden, W., Maly, R., Saggau, B., and Wagner, E., “Neue Erkenntnisse über elektrische Zündfunken und ihre Eignung zur Entflammung brennbarer Gemische, 2. Teil,” Automobil Industrie, 2/78, 15–21 (1978).

    Google Scholar 

  8. Maly, R., Saggau, B., Spaude, H. W., Vogel, M., Wagner E., Greiner, R., and Horch, E. J., “Die Auswirkungen einer verbesserten elektrischen Entflammung auf die Verbrennung im Ottomotor,” Automobil Industrie, 3/78, 37–41 (1978).

    Google Scholar 

  9. Maly, R., and Vogel, M., “Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark,” Proceedings of the 17th Symp. (Int.) on Combustion, The Combustion Institute, 17, 821–831 (1978).

    Article  Google Scholar 

  10. Maly, R., “Ignition Model for Spark Discharges and the Early Phase of Flame Front Growth,” Proceedings of the 18th Symp. (Int.) on Combustion, The Combustion Institute, 18, 1747–1754 (1981).

    Article  Google Scholar 

  11. Ziegler, G., and Maly, R., “Influence of Ignition on Inflammation and Flame Propagation,” Proceedings of the 1st Specialists Meeting (Int.), The Combustion Institute, 1, 89–94 (1981).

    Google Scholar 

  12. Müller, H., and Haahtela, O., “Einfluss der elektrischen Zündung auf das Betriebsverhalten und Abgaszusammensetzung im Ottomotor,” MTZ, 33, 408–414 (1972).

    Google Scholar 

  13. Harrington, J. A., Shishu, R. C., and Asik, J. R., “A Study of Ignition System Effects on Power, Emissions, Lean Misfire Limit, and EGR Tolerance of a Single-Cylinder Engine— Multiple Spark versus Conventional Single-Spark Ignition,” SAE paper 740188 (1974).

    Google Scholar 

  14. Johnston, R. W., Neuman, J. G., and Agarwal, P. D., “Programmable Energy Ignition System for Engine Optimization,” SAE paper 750348 (1975).

    Google Scholar 

  15. Schwarz, H., “Ignition Systems for Lean Burn Engines,” Proceedings of the Conference on Fuel Economy and Emissions of Lean Burn Engines, The Institute of Mechanical Engineers, I Mech E Conference Publications 1979-9, 87-96 (1979).

    Google Scholar 

  16. Albrecht, H., Maly, R., Saggau, B., and Wagner, E., “Entladungsvorgänge in Zündkerzen,” NTÖ 48, Institut für Physikalische Elektronik, Universität Stuttgart, Germany, May (1974).

    Google Scholar 

  17. Albrecht, H., Herden, W., Maly, R., Saggau, B., and Wagner, E., “Entladungsvorgänge in Zündkerzen,” NTÖ 48. Institut für Physikalische Elektronik, Universität Stuttgart, Germany, May (1976).

    Google Scholar 

  18. Saggau, B., and Ziegler, G., “Time and Space Resolved Temperature Measurements in a Combustion Wave in Methane/Air Mixtures by Spark Excited Rotational Bands,” Proceeding of the 5th International Symposium on Plasma Chemistry, ISPC-5, Heriot-Watt University, Edinburgh. 558-563 (1981).

    Google Scholar 

  19. Raether, H., “Electron Avalanches and Breakdown in Gases,” Butterworth, London (1964).

    Google Scholar 

  20. Bauer, G. H., “Analyse des Durchbruchs im inhomogenen elektrischen Feld mit Hilfe der Kurzzeitspektroskopie,” Thesis, Universität Stuttgart, Germany (1979).

    Google Scholar 

  21. Davies, A. J., Davies, C. S., and Evans, C. J., “Computer Simulation of Rapidly Developing Gaseous Discharges,” Proceedings of the IEE, 118, 816–823 (1971).

    Google Scholar 

  22. Spitzer, L., “Physics of Fully Ionized Gases,” Interscience, New York (1956).

    MATH  Google Scholar 

  23. Albrecht, H., Maly, R., and Wagner, E., “Correlation of Breakdown Mechanisms of Short N2 Sparks with Typical Line Radiation in the Vacuum-UV Region,” Proceedings of the XIIth International Conference on Phenomena in Ionized Gases, University of Eindhoven, The Netherlands, p. 153 (1975).

    Google Scholar 

  24. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., “Molecular Theory of Gases and Liquids,” Wiley, New York, pp. 765, 791 (1964).

    Google Scholar 

  25. Brode, H. L., “Numerical Solutions of Spherical Blast Waves,” J. Appl. Phys., 26, 766–775 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  26. Gänger, B., “Der elektrische Durchschlag in Gasen,” Springer Verlag, Berlin (1953).

    Book  Google Scholar 

  27. Finkelnburg, W., and Maeker, M., “Elektrische Bögen und thermische Plasmen,” Flügge, S., ed., Handbuch der Physik, Vol. 22, pp 254–444 Springer Verlag, Berlin (1956).

    Google Scholar 

  28. Cobine, J. D., “Gaseous Conductors,” Dover, New York (1958).

    MATH  Google Scholar 

  29. Brown, S. C., “Basic Data of Plasma Physics,” Wiley, New York (1966).

    Google Scholar 

  30. Roth, J., Bohdansky, J, and Ottenberger, W., “Data on Low-Energy Light-Ion Sputtering,” IPP 9/26, May (1979), Max Planck Institut für Plasmaphysik, Garching bei München, Germany.

    Google Scholar 

  31. Maly, R., and Meinel, H., “Determination of Flow Velocity, Turbulence Intensity and Length and Time Scales from Gas Discharge Parameters,” Proceedings of the 5th International Symposium on Plasma Chemistry, ISPC-5, Heriot-Watt University, Edinburgh, pp. 552-557 (1981).

    Google Scholar 

  32. Bloss, W. H., Maly, R., Saggau, B., and Vogel, M., “Experimentelle und theoretische Analyse der Verdichtungserhöhung bei Ottomotoren mit dem Audi-Brennverfahren,” 2. Teil: “Strömungs und Zündungseinflüsse,” Automobil-Industrie, 2/82, 165–171 (1982).

    Google Scholar 

  33. Bloss, W. H., patent application DE-P 28 10 159.

    Google Scholar 

  34. Hattari, T., Goto, K., and Ohigashi, S., “Study of Spark Ignition in Flowing Lean Mixtures,” Proceedings of the Conference on Fuel Economy and Emissions of Lean Burn Engines, The Institute of Mechanical Engineers, I Mech E Conference Publication 1979-9, 153-164 (1979).

    Google Scholar 

  35. Bowman, C. T., “Non Equilibrium Radical Concentrations in Shock-Initiated Methane Oxi-dation,” Proceedings of the 15th Symp. (Int.) on Combustion, The Combustion Institute, 15, 869–882 (1974).

    Article  Google Scholar 

  36. Westbrook, C. K., and Dryer, F. L., “Prediction of Laminar Flame Properties of Methanol-Air Mixtures,” Combustion and Flame, 37, 171–192 (1980).

    Article  Google Scholar 

  37. Gaydon A. G., and Wolfhardt, H. G., “Rames, Their Structure, Radiation and Temperature,” Chapman & Hall, Ltd., London (1970).

    Google Scholar 

  38. Swett, C. C., “Spark Ignition of Flowing Gases,” NACA-TR 1287, 1956, Lewis Flight Pro-pulsion Laboratory, Cleveland, Ohio.

    Google Scholar 

  39. Spalding, D. B., and Janin, V. K., “The Theory of Steady Laminar Spherical Flame Propa-gation,” Combustion and Flame, 5, 11–25 (1961).

    Article  MathSciNet  Google Scholar 

  40. Yang, C. H., “Theory of Ignition and Autoignition,” Combustion and Flame, 6, 215–225 (1962).

    Article  Google Scholar 

  41. Tiggelen, P. J. v., “On the Minimal Initial Size of an Explosive Reaction Center,” Combustion Sci. and Techn., 1, 225–232 (1969).

    Article  Google Scholar 

  42. Lefebvre, A. H., “Ignition Theory and its Application to the High Altitude Relighting Performance of Gas Turbine Combustors,” Cranfield International Symposium Series, The Cranfield Institute, Vol. 11, 105–119 (1971).

    Google Scholar 

  43. Maly, R., and Ziegler, G., “Theoretical and Experimental Investigation of the Knocking Pro-cess,” Symposium: Klopfen von Verbrennungsmotoren, Volkswagenwerk AG, Wolfsburg (1981).

    Google Scholar 

  44. Maly, R., Bloss, W. H., Meinel, H., Saggau, B., Wagner, E., and Ziegler, G., “Möglichkeiten zur Beeinflussung des Brennprozesses alternativer Kraftstoffe,” BMFT/DGMK-Gemeinschaftstagung, November 11–12, 1981, Deutsche Gesellschaft für Mineralölwissenschaft und Kohle-chemie, Hamburg, Germany.

    Google Scholar 

  45. Witze, P. O., and Vilchis, F. R., “Stroboscopic Laser Shadowgraph Study of the Effect of Swirl on the Homogeneous Combustion in a Spark Ignited Engine,” SAE paper 810226 (1981).

    Google Scholar 

  46. Woschni, G., and Fieger, J., “Experimentelle Bestimmung der örtlich gemittelten Wärmeübergangskoeffizienten in Ottomotor, MTZ, 42, 229–234 (1981).

    Google Scholar 

  47. van Basshuysen, R, Krömer, G., and Bluhm, K., “Experimentelle und theoretische Analyse der Verdichtungserhöhung bei Ottomotoren mit dem Audi-Brennverfahren,” 1. Teil: “Versuchsergebnisse,” Automobil Industrie, 1/82, 65–70 (1982).

    Google Scholar 

  48. Henning, H., and Vogt, R., “Experimentelle und theoretische Analyse der Verdichtungserhö-hung bei Ottomotoren,” 3. Teil: “Thermodynamische Analyse,” Automobil Industrie, 3/82, 285–288 (1982).

    Google Scholar 

  49. Svehla, R. A., “Thermodynamic and Transport Properties of the Hydrogen and Oxygen System,” NASA SP-3011, 1964, Lewis Research Center, Cleveland, Ohio.

    Google Scholar 

  50. Maly, R., and Ziegler, G., “Thermal Combustion Modeling—Theoretical and Experimental Investigation of the Knocking Process,” SAE paper 820759 (1982).

    Google Scholar 

  51. Maly, R., Wagner, E., and Ziegler, G., “Modeling of Flame Propagation and Energy Conversion Rates in Si-Engines,” SAE paper 830331 (1983).

    Google Scholar 

  52. Maly, R., Saggau, B., Wagner, E., and Ziegler, G., “Prospects of Ignition Enhancement,” SAE paper 830478 (1983).

    Google Scholar 

  53. Maly, R., Meinel, H., and Wagner, E., “Novel Method for Determining General Flow Parameters from Conventional Spark Discharges,” Int. Conference on Combustion in Engineering, Oxford, April 1983, I Mech E Publication C268.

    Google Scholar 

  54. Ziegler, G., Maly, R., and Wagner, E., “Effect of Ignition System Design on Inflammation Requirements in Ultra-Lean Turbulent Mixtures,” Int. Conference on Combustion in Engineering, Oxford, April 1983, I Mech E Publication C268.

    Google Scholar 

  55. Maly, R., “General Prospects of Improving Combustion Efficiency of I.C. Engines,” invited special paper SP14 for the 11th World Petroleum Congress, August 28-September 2, London (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maly, R. (1984). Spark Ignition: Its Physics and Effect on the Internal Combustion Engine. In: Hilliard, J.C., Springer, G.S. (eds) Fuel Economy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2277-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2277-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2279-3

  • Online ISBN: 978-1-4899-2277-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics