Skip to main content

Designing a Solid Electrolyte II. Strategies and Illustrations

  • Chapter
Solid State Microbatteries

Part of the book series: NATO ASI Series ((NSSB,volume 217))

Abstract

The iodide ion is large and polarizable; the Cu+ and Ag+ ions are quadrupolarizable because they have spherical d10 cores that may be transformed to ellipsoidal shape by energetically accessible, intraatomic d-s hybridization. Consequently the effective Rexcl is particularly softened, and even the simple salts exhibit transitions to fast ionic conduction at a Tt below the melting point Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Boyce, T. M. Hayes, and J. C. Mikkelson, Jr., Phys. Rev. B23, 2876 (1981).

    Article  ADS  Google Scholar 

  2. W. Schröter and J. Nölting, J. Phys. (Paris) 41: C6, 20 (1980).

    Google Scholar 

  3. M. Schultz, Proc. 2nd European Conf. Solid State Chemistry, Eindhoven Univ. of Technology, 7–9 June 1982.

    Google Scholar 

  4. M. O’Keefe and B. G. Hyde, J. Solid State Chem. 13, 172 (1975).

    Article  ADS  Google Scholar 

  5. T. Takahashi, H. Iwahara, and T. Esaka, J. Electrochem. Soc. 124, 1563 (1977).

    Article  Google Scholar 

  6. J. E. Ruiz-Diaz, D. Phil. Thesis, University of Oxford (1985).

    Google Scholar 

  7. U. Von Alpen, A. Rabenau, and G. M. Talat, Appl. Phys. Lett. 30, 621 (1977).

    Article  ADS  Google Scholar 

  8. H. Schulz and K. H. Thiemann, Act. Cryst. A35, 309 (1978); H. Schulz, Ann. Rev. Materials Science 12, 351 (1982).

    Article  ADS  Google Scholar 

  9. D. Brinkmann, M. Mali, and J. Roos, Phys. Rev. B26, 4810 (1982).

    Article  ADS  Google Scholar 

  10. H. Y-P Hong, J. A. Kafalas, and J. B. Goodenough, J. Solid State Chem. 9, 345 (1974).

    Article  ADS  Google Scholar 

  11. G. V. Chandrashekar and L. M. Foster, J. Electrochem. Soc. 124, 329 (1977).

    Article  Google Scholar 

  12. J. B. Goodenough, H. Y-P Hong, and J. A. Kafalas, Mat. Res. Bull., 11, 203 (1976).

    Article  ADS  Google Scholar 

  13. P. Spiegelberg, Ark. Kemi 14A, 1 (1940).

    Google Scholar 

  14. W. L. Roth, F. Reidinger, and S. La Placa, in Superionic Conductors, G. D. Mahan and W. L. Roth, eds. ( Plenum Press, N. Y. 1976 ), p. 223.

    Chapter  Google Scholar 

  15. R. A. Huggins, in Defects and Transport in Oxides, M. S. Seltzer and R. I. Jaffee, eds. ( Plenum Press, N. Y. 1974 ), p. 549.

    Google Scholar 

  16. L. O. Hagman and P. Kierkegaard, Acta. Chem. Scand. 22, 1822 (1968).

    Article  Google Scholar 

  17. R. E. Zizova, A. A. Voronkov, N. G. Shumyatskaya, V. V. Ilyukhin, and N. V. Belov, Sov. Phys. Dokl. 17, 618 (1973).

    ADS  Google Scholar 

  18. R. D. Shannon, B. E. Taylor, A. D. English, and T. Berzins, Electrochim. Acta. 22, 783 (1977).

    Article  Google Scholar 

  19. H. Y-P Hong, Adv. Chem. Ser. 163, 179 (1977).

    Google Scholar 

  20. R. D. Shannon, H. Y. Chen, and T. Berzins, Mat. Res. Bull. 12, 969 (1977).

    Article  Google Scholar 

  21. H. V. Beyeler and T. Hibma, Solid State Comm. 27, 641 (1978).

    Article  ADS  Google Scholar 

  22. H. Y-P. Hong, J. A. Kafalas, and M. Bayard, Mat. Res. Bull, 13, 757 (1978).

    Article  Google Scholar 

  23. B. A. Maksimov, Yu. A. Kharitonov, and N. V. Belov, Sov. Phys. Dokl. 18, 763 (1974).

    Google Scholar 

  24. B. A. Maximov, I. V. Petrov, A. Rabenau, and H. Schultz, Solid State Ionics 5, 311 (1982).

    Google Scholar 

  25. C. Delmas, A. Maazog, C. FouasSier, J. M. Réau, and P. Hagenmuller, in Fast Ionic Transport in Solids. Vashista, Mundy, and Shenoy, eds. ( Elsevier, North Holland, 1979 ) p. 451.

    Google Scholar 

  26. W. A. England, M. G. Cross, A. Hammett, P. J. Wiseman, and J. B. Goodenough, Solid State Ionics 1, 231 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodenough, J.B. (1990). Designing a Solid Electrolyte II. Strategies and Illustrations. In: Akridge, J.R., Balkanski, M. (eds) Solid State Microbatteries. NATO ASI Series, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2263-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2263-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2265-6

  • Online ISBN: 978-1-4899-2263-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics