Skip to main content

Mössbauer Spectroscopy—A Rewarding Probe of Morphological Structure of Semiconducting Glasses

  • Chapter
Physical Properties of Amorphous Materials

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

It has been fashionable to discuss the structure of stoichiometric melt-quenched network glasses in terms of chemically-ordered continuous random networks (CRN) since Zachariasen’s pioneering work on the subject nearly 50 years ago [1]. Glasses of the type AB2, such as SiO2and GeSe2in analogy to a-Ge, for example, have been described as random networks of geometrically well-defined A(B1/2)4 tetrahedral units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841(1932);

    Article  Google Scholar 

  2. M.F. Thorpe in Vibration Spectroscopy of Molecular Solids, edited by S. Bratos and R.M. Pick, Plenum, New York (1979), p. 341;

    Google Scholar 

  3. R J. Nemanich, G.A.N. Connell, T.M. Hayes and R.A. Street, Phys, Rev. B 18, 6900(1980).

    Article  ADS  Google Scholar 

  4. J.E. Griffiths, G.P. Espinosa, J.P. Remeika and J.C. Phillips, Solid State Commun. 40, 1077(1981);

    Article  ADS  Google Scholar 

  5. J.E. Griffiths, G.P. Espinosa, J.P. Remeika and J.C. Phillips, Phys. Rev. B 25, 1272 (1982);

    Article  ADS  Google Scholar 

  6. K. Murase, T. Fukunaga, Y. Tanaka, K. Yakushiji and I. Yunoki, Physica 117B and 118B, 962 (1983).

    Google Scholar 

  7. P. Boolchand, J. Grothaus, W.J. Bresser and P. Suranyi, Phys. Rev. B 25, 2975 (1982);

    Article  ADS  Google Scholar 

  8. P. Boolchand, J. Grothaus and J.C. Phillips, Solid State Commun. 45, 183 (1983).

    Article  ADS  Google Scholar 

  9. S.R. Ovshinsky, AIP Conference Proceedings 31, 67 (1976).

    Article  Google Scholar 

  10. J.P. deNeufville (private communication); also see J. Non- cryst. Solids 8–10, 85 (1972).

    Article  ADS  Google Scholar 

  11. J.C. Phillips, J. Noncryst. Solids 34, 153(1979);

    Article  ADS  Google Scholar 

  12. J.C. Phillips, J. Noncryst. Solids 43, 37 (1981).

    Article  ADS  Google Scholar 

  13. A. Feltz and H. Aust, J. Noncryst. Solids 51, 395(1982).

    Article  ADS  Google Scholar 

  14. R.L. Mossbauer, Z. Physik 151, 124(1958);

    Article  ADS  Google Scholar 

  15. R.L. Mossbauer, Naturwissenschaften 41, 538(1958). For review articles on the Mossbauer method used as a probe of glasses, see P.P. Seregin, A.R. Regel, A.A. Andre e v and F.S. Nasredinov, Phys. Stat. Sol. (a) 24, 373(1982) and W. Müller-Warmuth and H. Eckert, Phys. Reports 88., 93(1982).

    Article  ADS  Google Scholar 

  16. An excellent overview of the metallic glass systems investigated can be obtained in Proceedings of the International Conference on Amorphous Systems investigated by Nuclear Methods Balatoonfured, Hungary, September 1981, published in J. Nucl. Instrum. Methods 199, (1982). Are-view of the early oxide work has been given by C.R. Kurkjian, J. Noncryst. Solids 1, 157(1970).

    Google Scholar 

  17. A.C. Wright and A.J. Leadbetter, Phy. and Chem. of Glasses 17, 122(1976).

    Google Scholar 

  18. M.H. Brodsky in Amorphous Semiconductors, Topics in Applied Physics, Springer Verlag, (1979), vol. 37.

    Google Scholar 

  19. L. Ley, M. Cardona and R.A. Poliak in Photoemission in Solid II, Topics in Applied Physics, Springer Verlag, (1979), vol. 27, p. 11.

    Chapter  Google Scholar 

  20. P.J. Bray, F. Bucholtz, A.E. Geissbergerand I.A. Harris, Nucl. Instrum. Methods 199, 1(1982).

    Article  Google Scholar 

  21. M. Rubinstein and P.C. Taylor, Phys. Rev. B 9, 4258(1974); also see

    Article  ADS  Google Scholar 

  22. J. Szeftel and H. Alloul, Phys. Rev. Lett. 42, 1691(1979);

    Article  ADS  Google Scholar 

  23. J. Szeftel, Phil. Mag. 43, 549(1981).

    Article  Google Scholar 

  24. The Mossbauer effect of the 13.3keV x-ray in73Ge first observed by Raghavan and L. Pfeiffer, Phys. Rev. Lett. 32, 512(1974) has a natural linewidth of 6.98×l0–3mm, s. This extremely narrow resonance is hard to observe in well-ordered crystals because of inhomogeneous line broadening. In glasses this resonance is expected to have little use.

    Article  ADS  Google Scholar 

  25. N.N. Greenwood and T.C. Gibb, Mossbauer Spectroscopy, Chapman and Hall Ltd., London, (1971);

    Book  Google Scholar 

  26. G.K. Shenoy and F.E. Wagner, Mossbauer Isomer Shifts, North Holland, (1978).

    Google Scholar 

  27. G. Weyer, B.I. Deutch, A. Nylandsted-Larsen, J.U. Anderston and H.L. Nielsen, J. Phys. 35, 6–297(1974); also see

    Google Scholar 

  28. J.W. Peterson et al. Phys. Rev. B 21, 4292(1980);

    Article  ADS  Google Scholar 

  29. D.L. Williamson and S.K. Deb, J. Appl. Phys. 54, 2588(1983).

    Article  ADS  Google Scholar 

  30. P. Boolchand and M. Stevens, Phys. Rev. B 29, 1(1984).

    Article  ADS  Google Scholar 

  31. P.A. Flinn in Mossbauer Isomer Shifts, North Holland, (1978), p. 595; also see

    Google Scholar 

  32. J.D. Donaldson and B.J. Senior, J. Inorg. Nucl. Chem. 31, 881(1969).

    Article  Google Scholar 

  33. R.M. Sternheimer, Phys. Rev. 84, 244(1951);

    Article  ADS  MATH  Google Scholar 

  34. R.M. Sternheimer, Phys. Rev. 95, 736(1954).

    Article  ADS  Google Scholar 

  35. G. Czjzek, J. Fink, F. Gotz, H. Schmidt, J. M.D. Coey, J.P. Rebouillat and A. Lienard, Phys. Rev. B 23, 2513 (1981).

    Article  ADS  Google Scholar 

  36. A. Coker, T. Lee and T.P. Das, Phys. Rev. B 13, 55 (1976);

    Article  ADS  Google Scholar 

  37. A. Coker, T. Lee and T.P. Das, Phys. Rev. B 22, 2968 (1980);

    Article  ADS  Google Scholar 

  38. A. Coker, T. Lee and T.P. Das, Phys. Rev. B 22, 2976 (1980).

    Article  ADS  Google Scholar 

  39. W.J Bresser, P. Boolchand, P. Suranyi and J.P. deNeufville, Phys. Rev. Lett. 46, 1689 (1981);

    Article  ADS  Google Scholar 

  40. P. Boolchand, W. Bresser and G.J. Ehrhart, Phys. Rev. B 23, 3669 (1981).

    Article  ADS  Google Scholar 

  41. C. S. Kim and P. Boolchand, Phys. Rev. B 19, 3187 (1979).

    Article  ADS  Google Scholar 

  42. Sputtered amorphous films GeS, GeSe and GeTe have been studied by ion implanting l29Te matoms and recording the 129Iemission spectrum of such targets by P. Boolchand et al., using the isotope separator at Leuven University, Belgium.

    Google Scholar 

  43. P. Boolchand, W.J. Bresser, P. Suranyi and J.P. deNeufville, Nucl. Instrum. Methods 199, 295 (1982).

    Article  Google Scholar 

  44. More precisely, the isomershift of Nal129is taken to be +0.08(3)mm, s with respect to the closed shell configuration I. See ref. 28.

    Google Scholar 

  45. H. deWaard in Mössbauer Effect Data Index, edited by J.G. Stevens and V.E. Stevens, Plenum Press, N.Y., (1975), p. 447. (Covers 1973 literature.)

    Google Scholar 

  46. P. Boolchand, W.J. Bresser and M. Tenhover, Phys. Rev. B 25, 2971 (1982).

    Article  ADS  Google Scholar 

  47. W.J. Bresser, P. Boolchand, P. Suranyi, J.P. deNeufville and J.G. Hernandez, Phys. Rev. B, to be published.

    Google Scholar 

  48. P. Boolchand, B.L. Robinson and S. Jha, Phys. Rev. B 2, 3463 (1970).

    Article  ADS  Google Scholar 

  49. G. Lucovsky, R.J. Nemanich and F.L. Galeener, in Proceedings of the Seventh International Conference on Amorphous and Liquid Semiconductors, edited by W.E. Spear, Edinburgh, Scotland, (1977), p. 125.

    Google Scholar 

  50. A. Feltz, K. Zickmuller and G. Pfaff, in Proceedings of the Seventh International Conference on Amorphous and Liquid Semiconductors, edited by W.E. Spear, Edinburgh, Scotland, (1977), p. 133.

    Google Scholar 

  51. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, (1960).

    Google Scholar 

  52. D.E. Sayers, F.W. Lyttle and E.A. Stern, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig, Taylor and Francis Ltd., London, (1974), p. 403.

    Google Scholar 

  53. L. Cervinka and A. Hruby, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig, Taylor and Francis Ltd., London, (1974), p. 431; also see

    Google Scholar 

  54. L.E. Busse and S.R. Nagel, Phys. Rev. Lett. 4 7, 1848 (1981).

    Article  ADS  Google Scholar 

  55. O. Uemura, Y. Sagara and T. Satow, Phys. Stat. Solid A 26, 99(1974);

    Article  ADS  Google Scholar 

  56. O. Uemura, Y. Sagara and T. Satow, J. Noncryst. Solids 33, 71(1979).

    Article  ADS  Google Scholar 

  57. P.H. Fuoss, P. Eisenberger, W. K. Warburton and A. Bienenstock, Phys. Rev. Lett. 46, 1537(1981).

    Article  ADS  Google Scholar 

  58. G. Dittmarand, H. Schafer, Acta. Cryst. B 31, 2060(1975).

    Article  Google Scholar 

  59. J.R. Magaha and J.S. Lannin, J. Noncryst. Solids 59–60, 1055(1983).

    Article  ADS  Google Scholar 

  60. P. Tronc, M. Bensoussan, A. Brenac and C. Sebenne, Phys. Rev. B 8, 5947(1973);

    Article  ADS  Google Scholar 

  61. G. Lucovsky, J. P. deNeufville and F.L. Galeener, Phys. Rev. B 9, 1591(1974).

    Article  ADS  Google Scholar 

  62. G. Lucovsky, F.L. Galeener, R.H. Geils and R.C. Keezer, in Proceedings of the Symposium on the Structure of Noncrystalline Materials, Cambridge, U.K., edited by P.H. Gaskell, Taylor and Francis Ltd., London, (1977), p. 127.

    Google Scholar 

  63. G. Lucovsky, R.C. Keezer, R.H. Geils and H.A. Six, Phys. Rev. B 10, 5134(1974).

    Article  ADS  Google Scholar 

  64. R.J. Nemanich, S.A. Solin and G. Lucovsky, Solid State Commun. 21, 73(1977).

    Article  Google Scholar 

  65. J.A. Aronovitz, J.R. Banavar, M.A. Marcus and J.C. Phillips, Phys. Rev. B 28, 4454(1983); T. Fukunaga, Ph.D. thesis (unpublished), Osaka University (1982).

    Article  ADS  Google Scholar 

  66. P.M. Bridenbaugh, G.P. Espinosa, J.E. Griffiths, J.C. Phillips and J.P. Remeika, Phys. Rev. B 20, 4140(1979).

    Article  ADS  Google Scholar 

  67. D.J. Sarrach, J.P. deNeufville, and W.L. Hayworth, J. Noncryst. Solids 22, 245(1976).

    Article  ADS  Google Scholar 

  68. M. Stevens, J. Grothaus, P. Boolchand and J.G. Hernandez, Solid State Commun. 47, 199(1983);

    Article  ADS  Google Scholar 

  69. J.C. Phillips, Solid State Commun. 47, 203(1983).

    Article  ADS  Google Scholar 

  70. T. Fukunaga, Proceedings of Optical Effects in Amorphous Semiconductors, Snowbird, Utah, August 1984;

    Google Scholar 

  71. K. Murase and T. Fukunaga, 17th International Conference on Physics of Semiconductors, San Francisco, California, August 1984.

    Google Scholar 

  72. B. Weinstein and M.L. Slade, Proceedings of Optical Effects in Amorphous Semiconductors, Snowbird, Utah, August 1984;

    Google Scholar 

  73. B. Weinsteinetal., Phys. Rev. B 25, 781 (1982).

    Article  ADS  Google Scholar 

  74. G. Alebenese and A. Deriu, Riv. Nuovo Cimento 2, 1(1979).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boolchand, P. (1985). Mössbauer Spectroscopy—A Rewarding Probe of Morphological Structure of Semiconducting Glasses. In: Adler, D., Schwartz, B.B., Steele, M.C. (eds) Physical Properties of Amorphous Materials. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2260-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2260-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2262-5

  • Online ISBN: 978-1-4899-2260-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics