Skip to main content

On Lattice Gauge Theory with Matter

  • Chapter
Quarks, Leptons, and Beyond

Part of the book series: NATO ASI Series ((NSSB,volume 122))

Abstract

This lecture discusses some problems connected with the introduction of matter fields in lattice gauge theories. A review is not intended, rather we shall pick up and discuss a number of aspects, both of the theoretical and of the numerical approach, trying to gain a consistent, if very incomplete picture. The choice is to a large extent subjective, i. e. difficult to justify. The accent is on the lattice fermions, while the Higgs models and their properties are merely mentioned. We restrict ourselves to the euclidean Lagrangian formulation. All approximative calculations with fermions (strong coupling, mean field, “quenched” Monte Carlo, etc.) are left out. At a more special level, we shall stick to the Wilson fermions and shall not analyse other actions (Susskind, geometric, SLAC fermions, etc.), we shall illustrate the diffusion equation algorithms in their Random Walk representation (rather than the Langevin equation), etc. The author apologizes for an incomplete bibliography, which fails to do justice to all the work in this field. For monographs and reviews see Ref. [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Seiler, “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics”, Springer Verlag, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  2. Some recent reviews are: P. Hasenfratz, these Proceedings; J.B. Kogut, Rev. Mod. Phys. 55 (1983) 775

    Article  ADS  Google Scholar 

  3. M. Creutz, L. Jacobs, C. Rebbi, Phys. Reports 95 (1983) 201; J.-M. Drouffe, J.-B. Zuber, Physics Reports to be published.

    Article  ADS  Google Scholar 

  4. K. Osterwalder and R. Schrader, Comm. Math. Phys. 31 (1973) 83; 42 (1975) 281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. Wilson, Phys. Rev. D10 (1974) 2445.

    ADS  Google Scholar 

  6. A. Patrascioiu, E. Seiler and I.O. Stamatescu, Phys. Lett. 107B (1981) 364.

    ADS  Google Scholar 

  7. E. Seiler, I.O. Stamatescu and D. Zwanziger, Nucl. Phys. B, t. a. E. Seiler, “Stochastic quantization and gauge fixing in gauge theory”, Schladming lecture 1984.

    Google Scholar 

  8. E. Seiler and I.O. Stamatescu, work in progress.

    Google Scholar 

  9. F.J. Wegner, J. Math. Phys. 12 (1971) 2259.

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Creutz, Phys. Rev. D21 (1980) 2308; D23 (1981) 1815.

    MathSciNet  ADS  Google Scholar 

  11. G. Mack, Phys. Lett. 78B (1978) 263.

    ADS  Google Scholar 

  12. T. Eguchi and H. Kawai, Phys. Rev. Lett. 48 (1982) 1063.

    Article  ADS  Google Scholar 

  13. K.-H. Mütter and K. Schilling, Phys. Lett. 117B (1982) 72.

    Google Scholar 

  14. R. Pearson, J. Richardson and D. Toussaint, J. Comput. Phys. 51 (1983) 241.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Göpfert and G. Mack, Comm. Math. Phys. 81 (1981) 97; 82 (1982) 545.

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Bhanot and C. Rebbi, Nucl. Phys. B180 [FS2] (1981) 469.

    Article  ADS  Google Scholar 

  17. R.B. Pearson, Phys. Rev. B26 (1982) 6285.

    ADS  Google Scholar 

  18. J.M. Hammersley and D.C. Handscomb, “Monte Carlo Methods”, London: Methuen & Co. New York, J. Wiley & Sons, 1965.

    Google Scholar 

  19. G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 483.

    MathSciNet  Google Scholar 

  20. D. Zwanziger, Nucl. Phys. 192 (1981) 259

    Article  MathSciNet  ADS  Google Scholar 

  21. I. O. Stamatescu, U. Wolff and D. Zwanziger, Nucl. Phys. B225 [FS9] (1983) 377.

    Article  ADS  Google Scholar 

  22. D. Callaway and A. Rahman, Phys. Rev. Lett. 49 (1982) 613.

    Article  ADS  Google Scholar 

  23. M. Creutz, Phys. Rev. Lett. 50 (1983) 1411

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Bhanot, “Lattices, demons and the μ-canonical ensemble”, Visegrad lecture 1983.

    Google Scholar 

  25. S.G. Mikhlin and K.L. Smolitskiy, “Approximate Methods for Solution of Differential and Integral Equation” Am. Elsevier Publ. Co., New York 1967.

    Google Scholar 

  26. I.O. Stamatescu, “Remarks on Monte Carlo calculations for lattice gauge theories with fermions” Prep. München, MPI-PAE/PTh 81/81 (1981), and “Simultaneous processing of variables in lattice gauge theory calculations”, Prep. München, MPI-PAE/PTh 92/83 (1983).

    Google Scholar 

  27. H. Kühnelt, C.B. Lang and G. Vones, Nucl. Phys. B230 [FS10] (1984) 16.

    Article  ADS  Google Scholar 

  28. D.J.E. Callaway, Nucl. Phys. B233 (1984) 189.

    Article  ADS  Google Scholar 

  29. S. Elitzur, Phys. Rev. D12 (1975) 3978.

    ADS  Google Scholar 

  30. J. Fröhlich, G. Morchio and F. Strocchi, Nucl. Phys. B190 [FS3] (1981) 553.

    Article  ADS  Google Scholar 

  31. K. Osterwalder and E. Seiler, Ann. Phys. 110 (1978) 110.

    MathSciNet  Google Scholar 

  32. A.M. Polyakov, Phys. Lett. 72B (1978) 477

    MathSciNet  ADS  Google Scholar 

  33. L. D. McLerran and B. Svetitsky, Phys. Lett. 98B (1981), 195

    MathSciNet  ADS  Google Scholar 

  34. J. Kuti, J. Polonyi and K. Szladianyi, Phys. Lett. 98B (1981) 199

    ADS  Google Scholar 

  35. J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. 101B (1981) 89.

    ADS  Google Scholar 

  36. C. Borgs and E. Seiler, Nucl. Phys. B215 FS7 (1983) 125

    Article  MathSciNet  ADS  Google Scholar 

  37. F. Karsch, E. Seiler and I.O. Stamatescu, Phys. Lett. 131B (1983) 138.

    ADS  Google Scholar 

  38. H.G. Dosch and V.F. Müller, Nucl. Phys. B116 (1976) 470; B158 (1979) 419; N. Kawamoto, Nucl. Phys. B190 [FS3] (1981) 617.

    Article  ADS  Google Scholar 

  39. L.H. Karsten and J. Smit, Nucl. Phys. B183 (1981) 103

    Article  ADS  Google Scholar 

  40. W. Kerler, Phys. Rev. D23 (1981) 2384.

    MathSciNet  ADS  Google Scholar 

  41. G. Immirzi and K. Yoshida, Nucl. Phys. B210 [FS6] (1982) 499.

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Seiler and I.O. Stamatescu, Phys. Rev. D25 (1982) 2177.

    MathSciNet  ADS  Google Scholar 

  43. M. Lüscher, Comm. Math. Phys. 54 (1977) 283

    Article  MathSciNet  ADS  Google Scholar 

  44. D. C. Brydges, J. Fröhlich and E. Seiler, Ann. Phys. 121 (1979) 227.

    Article  ADS  Google Scholar 

  45. P. Becher, “The Dirac-Kähler lattice regularization of the fermionic degrees of freedom”, in Vol. Lattice Gauge Theories, Bonn’ 83 (Proceedings of John Hopkins Workshop), World Scientific.

    Google Scholar 

  46. H.B. Nielsen and M. Ninomiya, Nucl. Phys. B185 (1981) 20.

    Article  MathSciNet  ADS  Google Scholar 

  47. R. Groot, J. Hoek and J. Smit, “Normalization of currents in lattice QCD”, Preprint Amsterdam, ITFA-83-6.

    Google Scholar 

  48. T. Eguchi and R. Nakayama, Phys. Lett. 126B (1983) 89.

    MathSciNet  ADS  Google Scholar 

  49. K. Fabricius and G.C. Rossi, Phys. Lett. 127B (1983) 229.

    ADS  Google Scholar 

  50. F. Karsch, E. Seiler and I.O. Stamatescu, work in progress.

    Google Scholar 

  51. I.O. Stamatescu, Phys. Rev. D25 (1982) 1130.

    MathSciNet  ADS  Google Scholar 

  52. A. Hasenfratz and P. Hasenfratz, Phys. Lett. 104B (1981) 489.

    ADS  Google Scholar 

  53. Lang and H. Nicolai, Nucl. Phys. B200 FS4 (1982) 135; H. Joos and I. Montvay, “The screening of colour charge in numerical hopping parameter expansion”, Prep. DESY 83-046 (1983).

    Article  ADS  Google Scholar 

  54. A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, Phys. Lett. B117 (1982) 81

    ADS  Google Scholar 

  55. J. Engels, F. Karsch and H. Satz, Phys. Lett. 113B (1982) 398.

    ADS  Google Scholar 

  56. P. Hasenfratz, F. Karsch and I.O. Stamatescu, Phys. Lett. 133B (1983) 221.

    ADS  Google Scholar 

  57. D. Scalapino and R. Sugar, Phys. Rev. Lett. 46 (1981) 519.

    Article  MathSciNet  ADS  Google Scholar 

  58. F. Fucito, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B180 FS2 (1981) 360

    MathSciNet  ADS  Google Scholar 

  59. V. Azcoiti and A. Nakamura, Phys. Rev. D27 (1983) 2556

    ADS  Google Scholar 

  60. H. Hamber, E. Marinari, G. Parisi and C. Rebbi, Phys. Lett. 124B (1983) 99

    ADS  Google Scholar 

  61. Nucl. Phys. B225 [FS9] (1983) 475.

    Google Scholar 

  62. G. Bhanot, U. Heller and I.O. Stamatescu, Phys. Lett. 129B (1983) 440

    ADS  Google Scholar 

  63. G. Bhanot, H. Schneider, E. Seiler and I.O. Stamatescu, work in progress.

    Google Scholar 

  64. D.H. Weingarten and D.N. Petcher, Phys. Lett. 99B (1981) 333.

    MathSciNet  ADS  Google Scholar 

  65. F. Fucito and E. Marinari, Nucl. Phys. B190 [FS3] (1981) 266.

    Article  MathSciNet  ADS  Google Scholar 

  66. D. Zwanziger, Phys. Rev. Lett. 50 (1983) 1886.

    Article  ADS  Google Scholar 

  67. J. Polonyi and H.W. Wyld, “Microcanonical simulation of fermionic systems”, Prep. Illinois, ILL-(TH)-83-#36 (1983).

    Google Scholar 

  68. P. Rossi and D. Zwanziger, “Monte Carlo calculations with dynamical fermions by a local stochastic process”, Prep. NYU (1983).

    Google Scholar 

  69. J. Kuti, Phys. Rev. 49 (1982) 183

    ADS  Google Scholar 

  70. I. M. Barbour, J.P. Gilchrist, H. Schneider, G. Schierholz and M. Teper, Phys. Lett. 127B (1983) 433

    ADS  Google Scholar 

  71. W. Kerler, “On the handling of fermion integration in lattice gauge theory”, Preprint Marburg, June 1983

    Google Scholar 

  72. T. Burkitt, “Dynamical fermions in lattice gauge theories: Metropolis and Langevin techniques in two dimensions”, Preprint Edinburg, 83/240; Ulli Wolff, “A Reduction of the Kogut-Susskind Fermion Determinant”, Preprint NYU/TR1/84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stamatescu, I.O. (1985). On Lattice Gauge Theory with Matter. In: Fritzsch, H., Peccei, R.D., Saller, H., Wagner, F. (eds) Quarks, Leptons, and Beyond. NATO ASI Series, vol 122. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2254-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2254-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2256-4

  • Online ISBN: 978-1-4899-2254-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics